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Abstract. We show that arbitrary convergence behavior of Ritz values is possible in the Arnoldi method and
we give two parametrizations of the class of matrices with initial Arnoldi vectors that generates prescribed Ritz
values (in all iterations). The second parametrization enables us to prove that any GMRES residual norm history
is possible with any prescribed Ritz values (in all iterations), provided we treat the stagnation case appropriately.

1. Introduction. Let A be a nonsingular matrix of order n and b a nonzero n-dimensional
vector. The Arnoldi process [3] reduces A to upper Hessenberg form by a particular type of Gram-
Schmidt orthogonalization for the vectors b, Ab,A2b, . . . At each step of the process, one matrix-
vector multiplication with A is performed and one row and one column is appended to the previous
Hessenberg matrix. The process is well suited to iterative methods with large sparse matrices A.
Two popular methods extracting approximate solutions from the generated Hessenberg matrices
are the Generalized Minimal Residual (GMRES) method [34] for solving the linear system Ax = b
and the Arnoldi method (see, e.g., [32, 33]) for computing the eigenvalues and eigenvectors of A.

The Arnoldi process can be seen as a generalization to non-hermitian matrices of the Lanczos
process for tridiagonalization of hermitian matrices [20]. The Lanczos process is at the basis of
the Conjugate Gradients (CG) method [19, 21] for hermitian positive definite linear systems and
of the Lanczos method for hermitian eigenproblems [20]. In this sense GMRES is a generalization
of CG (even though the l2 norm of the residual is not minimized in CG) and the Arnoldi method
a generalization of the Lanczos method. As convergence of the CG and Lanczos methods are
well understood, it was natural to take the convergence theory of these methods as a starting
point for explaining the behavior of the GMRES and Arnoldi methods. In the CG method, the
convergence behavior is dictated by the eigenvalues of the matrix. In practice, the same is often
observed for the GMRES method, but, with possibly non-normal input matrices, the situation
becomes more subtle. For example, Greenbaum and Strakoš [18] proved that if a residual norm
convergence curve is generated by GMRES, the same curve can be obtained with a matrix having
prescribed eigenvalues. Greenbaum, Pták and Strakoš [17] complemented this result by proving
that any nonincreasing sequence of residual norms can be given by GMRES (a similar result for
prescribing the norm of the residual at restarting iterations for the restarted GMRES method can
be found in [40]). Furthermore, in Arioli, Pták and Strakoš [2] a complete parametrization was
given of all pairs {A, b} generating a prescribed residual norm convergence curve and such that
A has prescribed spectrum. The results in these papers show that the GMRES residual norm
convergence needs not, in general, depend on the eigenvalues of A. Other objects, mostly closely
related to eigenvalues, have been considered to explain convergence, for example the pseudo-
spectrum [37], the field of values [9] or the numerical polynomial hull [16]. In [39] it was suggested
that convergence of the eigenvalues of the Hessenberg matrices generated in the Arnoldi process
(the so-called Ritz values) to eigenvalues of A will often accelerate convergence of GMRES.

A fundamental tool in the convergence analysis of the Lanczos method for hermitian eigen-
problems is the interlacing property for the eigenvalues of the subsequently generated tridiagonal
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started in 2010 during a visit of G. Meurant to the Nečas Center of Charles University in Prague supported by the
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matrices. It enables to prove, among others, the persistence theorem or stabilization of Ritz val-
ues (see, e.g., [27, 28, 29] or [25]). There are several generalizations of the interlacing property
to normal matrices, see e.g. [12, 1], or the papers [22, 11] with geometric interpretations. How-
ever, just as for GMRES, potentially non-normal input matrices make convergence analysis of the
Arnoldi method delicate. There is no interlacing property for the principal submatrices of general
non-normal matrices, see [36] for a thorough discussion on this topic and its relation to the field
of Lie algebra’s. In [26] one finds a sufficient and necessary condition for prescribing arbitrary
eigenvalues of (not necessarily principal) submatrices of general non-hermitian matrices. It fol-
lows from [31] that the principal submatrices of non-normal Hessenberg matrices do not satisfy
an interlacing property either. For a detailed spectral analysis of non-normal Hessenberg matrices
and their principal submatrices, see also [42].

Since the GMRES and the Arnoldi methods are closely related through the Arnoldi orthogo-
nalization process, a naturally arising question is whether a result, similar to the results of Arioli,
Greenbaum, Pták and Strakoš, on arbitrary convergence behavior of the Arnoldi method can be
proved. By arbitrary convergence behavior of the Arnoldi method, we mean the ability to prescribe
all Ritz values from the very first until the very last iteration (we do not consider convergence
of eigenvectors). Note that this involves many more conditions than prescribing one residual
norm per GMRES iteration and the spectrum of the input matrix. In this paper we will give a
parametrization of the class of all matrices and initial Arnoldi vectors that generates prescribed
Ritz values. Besides this result on arbitrary convergence behavior of the Arnoldi method, we
derive a parametrization that allows to characterize all pairs {A, b} generating arbitrary conver-
gence behavior of both GMRES and Arnoldi. The Ritz values generated in the GMRES method
therefore do not, in general, have any influence on the generated residual norms.

The paper is organized as follows: In the remainder of this section we introduce some notation,
in particular the notation used in [2], which we adopt and we recall the parametrization given
in [2]. In Section 2 we give a parametrization of the class of matrices and initial Arnoldi vectors
that generates prescribed Ritz values. Section 3 reformulates the parametrization in order to
parametrize the pairs {A, b} generating arbitrary behavior of GMRES and Arnoldi at the same
time. We close with some words on future work.

1.1. Notation. We will use the following parametrization of matrices and right-hand sides
giving prescribed spectrum and convergence of the GMRES method (see Theorem 2.1 and Corol-
lary 2.4 of [2]).

Theorem 1.1. Assume we are given n positive numbers

f(0) ≥ f(1) ≥ · · · ≥ f(n− 1) > 0

and n complex numbers λ1, . . . , λn all different from 0. Let A be a matrix of order n and b an
n-dimensional vector. The following assertions are equivalent:

1. The spectrum of A is {λ1, . . . , λn} and GMRES applied to A and b with zero initial guess
yields residuals r(k), k = 0, . . . , n− 1 such that

‖r(k)‖ = f(k), k = 0, . . . , n− 1.

2. The matrix A is of the form

A = WY C(n)Y −1W ∗

and b = Wh, where W is a unitary matrix, Y is given by

Y =
[

h
R
0

]
,(1.1)
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R being a nonsingular upper triangular matrix of order n− 1, h a vector such that

h = [η1, . . . , ηn]T , ηk = (f(k − 1)2 − f(k)2)1/2, k < n, ηn = f(n− 1)(1.2)

and C(n) is the companion matrix corresponding to the polynomial q(λ) defined as

q(λ) = (λ− λ1) · · · (λ− λn) = λn +
n−1∑
j=0

αjλ
j , C(n) =

 0 −α0

In−1

...
−αn−1

 .

Furthermore, we will denote by ej the jth column of the identity matrix of appropriate order.
For a matrix M , the leading principal submatrix of order k will be denoted by Mk. Throughout the
paper we assume exact arithmetics and we also assume that the investigated Arnoldi processes do
not terminate before the nth iteration. This means that the input matrix must be nonderogatory.
Note that Theorem 1.1 assumes this situation. The case of early termination will be treated in a
forthcoming paper.

2. Prescribed convergence of Ritz values in Arnoldi’s method. Consider the kth
iteration of an Arnoldi process with a matrix A and initial vector b where an upper Hessenberg
matrix Hk (with entries hi,j) is generated satisfying

AV (k) = V (k)Hk + hk+1,k vk+1e
T
k , k ≤ n,(2.1)

with V (k)∗V (k) = Ik, V (k)e1 = b/‖b‖ and V (k)∗vk+1 = 0, V (k) being the matrix whose columns
are the basis vectors v1, . . . , vk of the kth Krylov subspace Kk(A, b). The eigenvalues of Hk give
the k-tuple

R(k) = (ρ(k)
1 , . . . , ρ

(k)
k )

of the k (not necessarily distinct) Ritz values generated at the kth iteration of Arnoldi’s method.
We denote by R the set

R ≡ {R(1),R(2), . . . ,R(n)}

representing all (n+1)n/2 generated Ritz values. We also use S for the strict Ritz values without
the spectrum of A, i.e.

S ≡ R \R(n),

and we will denote the (not necessarily distinct) eigenvalues of the input matrix by λ1, . . . , λn, i.e.

R(n) = (λ1, . . . , λn).

In this section we investigate whether the Arnoldi method can generate arbitrary Ritz values
in all iterations. The Ritz values in the Arnoldi method are eigenvalues of the leading principal
submatrices of upper Hessenberg matrices with positive real lower subdiagonal entries. Prescribing
the set R is only possible if there exist, at all, Hessenberg matrices with positive subdiagonal
entries where the eigenvalues of all the leading principal submatrices can be prescribed. In the
paper [31] it was proved that there is a unique upper Hessenberg matrix with the entry one along
the subdiagonal such that all leading principal submatrices have arbitrary prescribed eigenvalues,
see [31, Theorem 3]. We here give a characterization of this unique matrix, which we denote with
H(R), that shows how it is constructed from the prescribed Ritz values.
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Proposition 2.1. Let the set

R = { ρ
(1)
1 ,

(ρ(2)
1 , ρ

(2)
2 ) ,

...
(ρ(n−1)

1 , . . . , ρ
(n−1)
n−1 ) ,

(λ1 , . . . . . . . . . , λn) },

represent any choice of n(n + 1)/2 complex Ritz values and denote the companion matrix of the
polynomial with roots ρ

(k)
1 , . . . , ρ

(k)
k by C(k). If we define the unit upper triangular matrix U(S)

through

U(S) = In −


0 C(1)e1

0

...
C(2)e2

0

...

...
C(n−1)en−1

0

 ,(2.2)

then the unique upper Hessenberg matrix H(R) with the entry one along the lower subdiagonal
and with the spectrum λ1, . . . , λn such that the kth leading principal submatrix has eigenvalues
ρ
(k)
1 , . . . , ρ

(k)
k for all k = 1, . . . , n− 1 is

H(R) = U(S)−1C(n)U(S).(2.3)

Proof. We will show that the spectrum of the k × k leading principal submatrix of H(R) is
ρ
(k)
1 , . . . , ρ

(k)
k (uniqueness of H(R) was shown in [31] and will also be proved later). Let Uk denote

the k × k leading principal submatrix of U(S) and let, for j > k, ũj denote the vector of the first
k entries of the jth column of U(S)−1. The spectrum of the k × k leading principal submatrix of
H(R) is the spectrum of

[Ik, 0]U(S)−1C(n)U(S)
[

Ik

0

]
= [U−1

k , ũk+1, . . . , ũn]

 0
Uk

0

 = [U−1
k , ũk+1]

[
0

Uk

]
.

It is also the spectrum of the matrix

Uk[U−1
k , ũk+1]

[
0

Uk

]
U−1

k = [Ik, Ukũk+1]
[

0
Ik

]
,

which is a companion matrix with last column Ukũk+1. From

ek+1 = Uk+1U
−1
k+1ek+1 =

[
Uk −C(k)ek

0 1

] [
U−1

k ũk+1

0 1

]
ek+1 =

[
Ukũk+1 − C(k)ek

1

]
we obtain Ukũk+1 = C(k)ek.

Note that (2.3) represents a similarity transformation separating the spectrum of H(R) from
the strict Ritz values S of H(R). The matrix U(S) transforms the companion matrix whose strict
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Ritz values are all zero to a Hessenberg matrix with arbitrary Ritz values and it is itself composed
of (parts of) companion matrices. We will call U(S), for lack of a better name, the Ritz value
companion transform.

Clearly, the Ritz values generated in the Arnoldi method can exhibit any convergence behavior:
It suffices to apply the Arnoldi process with the initial Arnoldi vector e1 and the matrix H(R)
with arbitrarily prescribed Ritz values from Proposition 2.1. Then the method generates the
Hessenberg matrix H(R) itself. If the prescribed Ritz values occur in complex conjugate pairs,
then the Ritz value companion transform U(S) and the Hessenberg matrix H(R) in (2.3) are real
and the Arnoldi process runs without complex arithmetics.

We next look for a parametrization of the class of all matrices and initial Arnoldi vectors
generating given Ritz values. From H(R) we can easily obtain an upper Hessenberg matrix whose
leading principal submatrices have the same prescribed eigenvalues but with arbitrary positive
values along the lower subdiagonal. Let σ1, σ2, . . . , σn−1 be given positive real numbers and
consider the similarity transformation

H ≡ diag (1, σ1, σ1σ2, . . . ,Πn−1
j=1 σj) H(R)

(
diag (1, σ1, σ1σ2, . . . ,Πn−1

j=1 σj)
)−1

.

Then the lower subdiagonal of H has the entries σ1, σ2, . . . , σn−1 and all leading principal subma-
trices of H are similar to the corresponding leading principal submatrices of H(R). The following
theorem shows the uniqueness of H.

Theorem 2.2. Let the set

R = { ρ
(1)
1 ,

(ρ(2)
1 , ρ

(2)
2 ) ,

...
(ρ(n−1)

1 , . . . , ρ
(n−1)
n−1 ) ,

(λ1 , . . . . . . . . . , λn) },

represent any choice of n(n + 1)/2 complex Ritz values and let

Dσ = diag (1, σ1, σ1σ2, . . . ,Πn−1
j=1 σj)

where σ1, σ2, . . . , σn−1 are n− 1 positive real numbers. Then

H = Dσ H(R)D−1
σ

is the unique Hessenberg matrix H with lower subdiagonal entries

hk+1,k = σk, k = 1, . . . , n− 1,

with eigenvalues λ1, . . . , λn and with ρ
(k)
1 , . . . , ρ

(k)
k being the eigenvalues of its kth leading principal

submatrix for all k = 1, . . . , n− 1.
Proof. We already explained that H has the desired Ritz values and subdiagonal entries. It

remains to show uniqueness. For this we need a recursion for the characteristic polynomials of
the leading submatrices Hk of H. We denote the characteristic polynomial of Hk by pk(λ) and
by σk,i we denote the product of prescribed subdiagonal entries

σk,i =
k∏

`=i

σ`.
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We also define the polynomial p0(λ) ≡ 1. Using expansion along the last column to compute the
determinant of Hk − λI, we get

det(Hk − λI) = (−1)k−1h1,kσk−1,1 + (−1)k−2h2,kp1(λ)σk−1,2

+ (−1)k−3h3,kp2(λ)σk−1,3 + . . . + (hk,k − λ)pk−1(λ),

and hence we have the recursion

pk(λ) = (hkk − λ)pk−1(λ) +
k−1∑
i=1

(−1)k−ihikσk−1,ipi−1(λ), 1 ≤ k ≤ n.(2.4)

Now assume both H and H̃ have the desired Ritz values and subdiagonal entries and let us prove
that H = H̃ by induction for all subsequent leading principal submatrices. Clearly, h1,1 = h̃1,1 =
ρ
(1)
1 and if the claim is valid for all leading principal submatrices of dimension at most k− 1, then

the entries of Hk and H̃k can differ only in the last column. Denote the characteristic polynomial
of H̃k by p̃k(λ). By comparing the coefficients (subsequently before λk until λ0) of the polynomial
pk(λ) in (2.4) and of the polynomial

p̃k(λ) = (h̃kk − λ)pk−1(λ) +
k−1∑
i=1

(−1)k−ih̃ikσk−1,ipi−1(λ),

which must be identical with pk(λ) by assumption, we obtain hik = h̃ik subsequently for i =
k, k − 1, . . . , 1.

Theorem 2.2 immediately leads to a parametrization of the matrices and initial Arnoldi vectors
that generate a given set of Ritz values R. In addition, the lower subdiagonal of the generated
Hessenberg matrix can be prescribed.

Corollary 2.3. Assume we are given a set of tuples of complex numbers

R = {ρ(1)
1 ,

(ρ(2)
1 , ρ

(2)
2 ) ,

...
(ρ(n−1)

1 , . . . , ρ
(n−1)
n−1 ) ,

(λ1 , . . . . . . . . . , λn)} ,

and n − 1 positive real numbers σ1, . . . , σn−1. If A is a matrix of order n and b a nonzero n-
dimensional vector, then the following assertions are equivalent:

1. The Hessenberg matrix generated by the Arnoldi process applied to A and initial Arnoldi
vector b has eigenvalues λ1, . . . , λn, lower subdiagonal entries σ1, . . . , σn−1 and ρ

(k)
1 , . . . , ρ

(k)
k

are the eigenvalues of its kth leading principal submatrix for all k = 1, . . . , n− 1.
2. The matrix A is of the form

A = V DσU(S)−1C(n)U(S)D−1
σ V ∗

and b = ‖b‖V e1, where V is a unitary matrix, Dσ is the diagonal matrix

Dσ = diag (1, σ1, σ1σ2, . . . ,Πn−1
j=1 σj),

U(S) is the Ritz value companion transform in (2.2) and C(n) is the companion matrix
of the polynomial with roots λ1, . . . , λn.
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Corollary 2.3 is an analogue of Theorem 1.1 on arbitrary convergence of the GMRES method.
It is a stronger result in the sense that we prescribe k values (the k Ritz values) in the kth
iteration, whereas Theorem 1.1 prescribes only one value (the kth residual norm); the spectrum
of A is prescribed in both results. The corollary shows, surprisingly, that for general non-normal
matrices the distribution of the Ritz values generated in the Arnoldi method can be arbitrary and
fully independent on the spectrum. Note that there exist some results on the distribution of Ritz
values for specific non-normal matrices, for example for Jordan blocks and block diagonal matrices
with a simple normal eigenvalue, see [7].

The given parametrization may be useful for convergence analysis of versions of Arnoldi used
in practice, e.g. implicitly restarted Arnoldi with polynomial shifts [4, 5]; in particular it may
help to better understand (and avoid) cases where Arnoldi with exact shifts fails, see, e.g. [10].
As Ritz values are contained in the field of values, it may also have implications for analysis of
iterative methods based on the field of values.

Of course, we here deal with the problem of constructing both an input matrix and an initial
vector to produce prescribed Ritz values. With the matrix given, constructing an initial vector
to produce prescribed Ritz values was done in [35] for a hermitian matrix. If it has distinct
eigenvalues, the paper shows how to construct a perverse initial vector such that the Ritz values
in the one but last iteration are as far from the eigenvalues as allowed by the interlacing property
(see [11] for a generalization to the normal case).

Another consequence of Corollary 2.3 is that the Ritz values in the Arnoldi method are in
general independent of the subdiagonal elements hk+1,k of the generated Hessenberg matrix. This
is not that strange if one realizes that hk+1,k is not an element of the matrix Hk used to extract
the current Ritz values. But on the other hand the independency from hk+1,k is still surprising in
view of the fact that one is used to regard the residual norm

‖AV (k)y − ρ(k)V (k)y‖ = hk+1,k|eT
k y|(2.5)

for an eigenpair (ρ(k), y) of Hk, see (2.1), as a measure for the quality of the approximate Ritz
value-vector pair (ρ(k), V (k)y). Corollary 2.3 shows that any small nonzero value of hk+1,k is
possible with ρ(k) arbitrarily far from the eigenvalues of A. And conversely, all eigenvalues of Hk

may coincide with eigenvalues of A with an arbitrarily large value of hk+1,k. Though it is known
that the residual norm is not always indicative for the quality of the Ritz values, see e.g. [8, 14], one
might expect that in such counterintuitive cases, the misleading behavior of hk+1,k is compensated
by |eT

k y| in (2.5). But consider the following: Let A be parameterized as A = V H(R)V ∗ and
b = V e1 and let for an approximate Ritz value-vector pair (ρ(k), V (k)y) the residual norm in (2.5)
be |eT

k y| (all subdiagonal entries hk+1,k of H(R) are one) where

H(R)ky = ρ(k)y.

For any choice of arbitrarily small nonzero entries σ1, . . . , σn−1, the matrix V DσH(R)D−1
σ V ∗ with

Dσ = diag(1, σ1, . . . ,Πn−1
j=1 σj) generates the same Ritz values, but the residual norm in (2.5) will

change as σk|eT
k ys| where (

Dσk
H(R)kD−1

σk

)
ys = ρ(k)ys

with Dσk
= diag(1, σ1, . . . ,Πk−1

j=1σj). However, the eigenvector ys is nothing but a scaling of y
because (

Dσk
H(R)kD−1

σk

)
(Dσk

y) = ρ(k)(Dσk
y),

i.e. ys = Dσk
y. This means that, with small enough subdiagonal entries, the value |eT

k ys| is small
too (even if ys is normalized) and does not compensate for a small σk, in spite of possibly diverging
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Ritz values. Something similar can be said about cases where all eigenvalues of Hk coincide with
eigenvalues of A for arbitrarily large values of σk.

Let us conclude this section with an example of prescribing Ritz values with the parametriza-
tion in Corollary 2.3. As we can prescribe any behavior of Ritz values, we can also prescribe Ritz
values that grow further away from the eigenvalues of A in every iteration. We illustrate this
behavior for a small example with nice numbers. We prescribe the Ritz values

R = {1,

(0, 2) ,

(−1, 1, 3) ,

(−2, 0, 2, 4) ,

(1, 1, 1, 1, 1)} .

Then the Ritz value companion transform U(S) is

U(S) =


1 −1 0 3 0

1 −2 −1 16
1 −3 −4

1 −4
1

 .

With the companion matrix C(5) for the spectrum {1}, the matrix H(R) corresponding to the
prescribed Ritz values with unit lower subdiagonal is

H(R) = U(S)−1C(5)U(S) =


1 1 0 −3 0
1 1 3 0 −31

1 1 6 0
1 1 −10

1 1

 .

With Corollary 2.3, for any unitary matrix V of size five and any diagonal matrix Dσ of size five
with positive entries, the matrix

V Dσ


1 1 0 −3 0
1 1 3 0 −31

1 1 6 0
1 1 −10

1 1

D−1
σ V ∗

with initial Arnoldi vector βV e1 for a nonzero β generates the prescribed “diverging” Ritz values.
The residual norms (2.5) with Dσ = I5 in the above parametrization are

{ 1,

(
1√
2
,

1√
2
) ,

(
1√
6
,

1√
10

,
1√
6
) ,

(
1√
19

,
1√
91

,
1√
91

,
1√
19

) } .
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The same “diverging” Ritz values are generated with the exponentially decreasing values 2−1, 2−2, 2−3, 2−4

on the lower subdiagonal of the generated Hessenberg matrix: With Dσ = diag(1, 2−1, 2−3, 2−6, 2−10)
we have the parametrization

V


1 2 0 −192 0

0.5 1 12 0 −15872
0.25 1 48 0

0.125 1 −160
0.0625 1

V ∗(2.6)

of the input matrix. The rounded residual norms (2.5) with this choice of lower subdiagonal
entries are

{ 1
2
,

(0.1118, 0.1118) ,

(0.011, 0.0052, 0.011) ,

(0.0006, 0.0001, 0.0001, 0.0006) } ,

even though the corresponding Ritz values are not converging. Note the large numbers in the last
columns of the previous Hessenberg matrix; its condition number is about 1.37 ·108, the condition
number of its eigenvector matrix is about 4.19 · 1015. With Dσ = I5 the condition number of
the Hessenberg matrix is about 1390, but the condition number of the corresponding eigenvector
matrix is still about 2.61 · 1013.

3. Prescribed convergence behavior of the Arnoldi and the GMRES methods for
the same pair {A, b}. The diagonal matrix Dσ with positive entries in Corollary 2.3 contains the
lower subdiagonal entries of the generated Hessenberg matrix and it can be chosen arbitrarily, for
any prescribed Ritz values. Because the values of these subdiagonal entries influence the residual
norms generated by the GMRES method applied to the corresponding linear system, there is a
chance we can modify the behavior of GMRES while maintaining the prescribed Ritz values. This
is what we will investigate next. Rather than directly choosing the diagonal matrix Dσ to control
GMRES convergence, we will derive an alternative parametrization of the matrices and initial
Arnoldi vectors that generate a given set of Ritz values. This parametrization will reveal the
relation with the parametrization in Theorem 1.1 and thus might enable to combine prescribing
Ritz values with prescribing GMRES residual norms.

The parametrization in Corollary 2.3 is based on a unitary matrix V whose columns span
the nth Krylov subspace Kn(A, b) whereas the parametrization in Theorem 1.1 works with a
unitary matrix W whose columns span AKn(A, b). To better understand the relation between
Corollary 2.3 and Theorem 1.1, we will translate the first parametrization in terms of the second
one. To achieve this, we will use two factorizations of the Krylov matrix

K ≡
[
b, Ab,A2b, . . . , An−1b

]
,

one with V and one with W . The first factorization is nothing but the QR decomposition

K = V U(3.1)

of K. By the QR decomposition we will always mean the unique QR decomposition whose upper
triangular factor has positive real main diagonal. The upper triangular factor U is related to the
generated Ritz values as follows.
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Lemma 3.1. Let H be the Hessenberg matrix generated by an Arnoldi process terminating at
the nth iteration applied to A and b and let U(S) be the Ritz value companion transform in (2.2)
corresponding to the generated strict Ritz values. Then the upper triangular factor U of the QR
factorization (3.1) of the Krylov matrix K is

U = ‖b‖diag
(
1, h2,1, h2,1h3,2, . . . ,Πn−1

j=1 hj+1,j

)
U(S)−1.

Proof. Any Arnoldi process (terminating at the nth iteration) can be written according to
the parametrization of Corollary 2.3 with Dσ = diag (1, h2,1, . . . ,Πn−1

j=1 hj+1,j). Then in the Krylov
matrix

K =
[
b, Ab, . . . , An−1b

]
we can take ‖b‖V out of the brackets to factor it since

b = ‖b‖V e1

Ab = ‖b‖V DσU(S)−1C(n)U(S)D−1
σ e1

A2b = ‖b‖V
(
DσU(S)−1C(n)U(S)D−1

σ

)2

e1

· · · = · · ·

An−1b = ‖b‖V
(
DσU(S)−1C(n)U(S)D−1

σ

)n−1

e1.

Therefore

K = ‖b‖V
[
e1, DσU(S)−1C(n)U(S)D−1

σ e1, . . . ,
(
DσU(S)−1C(n)U(S)D−1

σ

)n−1

e1

]
.

Now we would like to show that the last matrix on the right-hand side is just DσU(S)−1. The
first entry of the diagonal matrix Dσ being one we have U(S)D−1

σ e1 = e1. Obviously we have
(DσU(S)−1C(n)U(S)D−1

σ )j = (DσU(S)−1(C(n))jU(S)D−1
σ ). Hence

(
DσU(S)−1C(n)U(S)D−1

σ

)j
e1

= DσU(S)−1(C(n))je1. It is straightforward to see that (C(n))je1 = ej+1. This yields(
DσU(S)−1C(n)U(S)D−1

σ

)j

e1 = DσU(S)−1ej+1, j = 0, . . . , n− 1

and hence we have the factorization K = ‖b‖V DσU(S)−1. On the other hand K = V U . The
uniqueness of the QR factorization gives U = ‖b‖DσU(S)−1.

The previous lemma immediately leads to a relation between U and H, H = UC(n)U−1. A
similar result is proven in [23]. The second factorization of K involves the unitary factor W . We
prove the following result in the same way as the previous lemma; it was also proved in [2] in a
different way.

Lemma 3.2. Consider a matrix A with initial Arnoldi vector b such that the Arnoldi process
does not terminate before iteration n. If we write A as A = WY C(n)Y −1W ∗ and b as b = Wh
according to Theorem 1.1, then we have

K = WY.
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Proof. With Theorem 1.1 the Krylov matrix is defined as

K =
[
Wh, AWh, A2Wh, . . . , An−1Wh

]
.

We wish to take W out of the brackets to factor K. This can be done since

AW = WY C(n)Y −1

A2W = W (Y C(n)Y −1)2

· · · = · · ·
An−1W = W (Y C(n)Y −1)n−1.

Therefore

K = W
[
h, Y C(n)Y −1h, . . . , (Y C(n)Y −1)n−1h

]
.

Now we would like to show that the last matrix on the right-hand side is just Y . The vector h
being the first column of Y we have h = Y e1. Obviously we have (Y C(n)Y −1)j = Y (C(n))jY −1.
Hence (Y C(n)Y −1)jh = Y (C(n))je1. As we have seen before, (C(n))je1 = ej+1. This yields

(Y C(n)Y −1)jh = Y ej+1, j = 0, . . . , n− 1

and this proves the result.

With the two factorizations K = V U = WY we are ready for a second parametrization,
formulated with the notation of Theorem 1.1 and based on the unitary matrix W , of the pairs
{A, b} generating arbitrary Ritz values.

Theorem 3.3. Assume we are given a set of tuples of complex numbers

R = {ρ(1)
1 ,

(ρ(2)
1 , ρ

(2)
2 ) ,

...
(ρ(n−1)

1 , . . . , ρ
(n−1)
n−1 ) ,

(λ1 , . . . . . . . . . , λn)} ,

such that (λ1, . . . , λn) contains only nonzero numbers and n−1 positive real numbers σ1, . . . , σn−1.
If A is a matrix of order n and b a nonzero n-dimensional vector, then the following assertions
are equivalent:

1. The Hessenberg matrix generated by the Arnoldi process applied to A and initial Arnoldi
vector b has eigenvalues λ1, . . . , λn, lower subdiagonal entries σ1, . . . , σn−1 and ρ

(k)
1 , . . . , ρ

(k)
k

are the eigenvalues of its kth leading principal submatrix for all k = 1, . . . , n− 1.
2. The matrix A is of the form

A = WY C(n)Y −1W ∗

and b = Wh, where W is a unitary matrix, C(n) is the companion matrix corresponding
to the eigenvalues λ1, . . . , λn and Y is of the form

Y =
[

h
R
0

]
.

11



R is the upper triangular matrix

R = ΓRtT,(3.2)

of order n− 1, where T is the trailing principal submatrix in the partitioning

‖b‖diag (1, σ1, σ1σ2, . . . ,Πn−1
j=1 σj)U(S)−1 =

[
‖b‖ t∗

0 T

]
,(3.3)

of the scaled inverse of the Ritz value companion transform U(S) in (2.2) and Rt is the
upper triangular factor in the Cholesky decomposition

R∗
t Rt = In−1 + T−∗tt∗T−1.(3.4)

The diagonal matrix Γ with unit modulus entries is such that

eT
k Γ(RtT )−∗t ≥ 0, k = 1, . . . , n− 1(3.5)

and the entries of h = [η1, . . . , ηn]T satisfy

[η1, . . . , ηn−1]T = ‖b‖Γ(RtT )−∗t, ηn = ‖b‖
√

1− ‖(RtT )−∗t‖2.(3.6)

Proof. First we prove the implication 1 → 2. Because the Arnoldi process does not stop before
the last iteration, GMRES applied to the linear system with matrix A, right-hand side b and zero
initial guess does not stop before the last iteration, and we can write A = WY C(n)Y −1W ∗ and
b = Wh according to Theorem 1.1. From Lemma 3.2, the factorization (3.1) and Lemma 3.1 we
have

K∗K = Y ∗W ∗WY = Y ∗Y, K∗K = U∗V ∗V U = ‖b‖2U(S)−∗DT
σ DσU(S)−1.

Hence the matrix Y from the parametrization must satisfy

Y ∗Y = ‖b‖2U(S)−∗DT
σ DσU(S)−1.

Let ĥ = (η1, . . . , ηn−1)T be the vector of the first n − 1 components of h from (1.2). Then from
(1.1) we have

Y ∗Y =
[
‖h‖2 ĥ∗R

R∗ĥ R∗R

]
.(3.7)

Comparing (3.7) with ‖b‖2U(S)−∗DT
σ DσU(S)−1 and using the partitioning (3.3), we obtain for

R and ĥ the conditions

R∗R = T ∗T + tt∗, ĥ = ‖b‖R−∗t.(3.8)

Furthermore, we have the conditions ηk ≥ 0, k = 1, . . . , n− 1, because all entries of ĥ correspond
to entries describing the GMRES convergence curve according to (1.2).

Let Rt be the upper triangular factor in the Cholesky decomposition

R∗
t Rt = In−1 + T−∗tt∗T−1,

let Γ be a diagonal matrix with unit modulus entries and let R = ΓRtT . Then

R∗R = T ∗R∗
t Γ

∗ΓRtT = T ∗(In−1 + T−∗tt∗T−1)T = T ∗T + tt∗

12



is always satisfied and Γ can be chosen such that

eT
k Γ(RtT )−∗t ≥ 0, k = 1, . . . , n− 1.

It follows that

ĥ = ‖b‖R−∗t = ‖b‖Γ(RtT )−∗t

and with ‖h‖ = ‖W ∗b‖ = ‖b‖ we obtain

ηn =
√
‖h‖2 − ‖ĥ‖2 = ‖b‖

√
1− ‖(RtT )−∗t‖2.

For the implication 2 → 1, let A = WY C(n)Y −1W ∗ be the parametrization of A given in
assertion 2 and let b = Wh. By Lemma 3.2, K = WY and let K = V Ũ be the QR factorization
of the Krylov matrix K. We first show that Ũ = ‖b‖DσU(S)−1.

In the QR decomposition K = V Ũ we have V e1 = b/‖b‖ and therefore we can partition Ũ as

Ũ =
[
‖b‖ t̃∗

0 T̃

]
.(3.9)

With the first part of the proof

R∗R = T̃ ∗T̃ + t̃t̃∗, ĥ = ‖b‖R−∗t̃,

see (3.8), i.e.

t̃ =
R∗ĥ

‖b‖
, T̃ ∗T̃ = R∗R− R∗ĥĥ∗R

‖b‖2
.

But by assumption, we have for t and T from (3.4) and (3.6) the equalities

t =
(RtT )∗Γ∗ĥ

‖b‖
=

R∗ĥ

‖b‖
,

T ∗T = T ∗(R∗
t Rt − T−∗tt∗T−1)T = T ∗R∗

t Γ
∗ΓRtT − tt∗ = R∗R− R∗ĥĥ∗R

‖b‖2
.

The matrix R∗R − R∗ĥĥ∗R
‖b‖2 is positive definite since it is the Schur complement of ‖h‖2 in Y ∗Y ,

which is positive definite. Therefore the Cholesky decomposition of the matrix R∗R − R∗ĥĥ∗R
‖b‖2

exists and T̃ = T is the unique Cholesky factor. Together with t̃ = t = R∗ĥ
‖b‖ we have

Ũ = ‖b‖DσU(S)−1.

Because of K = WY = V Ũ and with (2.3) it follows that

A = WY C(n)Y −1W ∗ = V ŨC(n)Ũ−1V ∗

= V DσU(S)−1C(n)U(S)D−1
σ V ∗ = V DσH(R)D−1

σ V ∗.

The upper Hessenberg matrix DσH(R)D−1
σ generated by the Arnoldi method therefore has the

prescribed Ritz values and subdiagonal entries.
13



Note that Theorem 3.3 and Corollary 2.3 are not fully equivalent. In Theorem 3.3 we must
assume, for reasons of compatibility with Theorem 1.1, that the spectrum of A does not contain
the origin. In Corollary 2.3 the only free parameters are a unitary matrix and the norm of the
initial Arnoldi vector. In Theorem 3.3 there appears to be slightly more freedom because a unit
modulus entry of Γ can lie anywhere on the unit circle if the corresponding entry of (RtT )−∗t
is zero, see (3.5). There is of course much less freedom in Theorem 3.3 than there is in the
parametrization of Theorem 1.1 when prescribing a GMRES convergence curve. Note that every
choice of σ1, . . . , σn−1 in Theorem 3.3 uniquely determines the vector h representing the GMRES
convergence curve generated with A and b.

Let us illustrate Theorem 3.3 with the example we used earlier. With the prescribed Ritz
values

R = {1,

(0, 2) ,

(−1, 1, 3) ,

(−2, 0, 2, 4) ,

(1, 1, 1, 1, 1)} ,

a unit initial vector b and Dσ = diag(1, 2−1, 2−3, 2−6, 2−10), the partitioning (3.3) in Theorem 3.3
is

DσU(S)−1 =


1 1 2 4 8

1
2 1 3.5 10

1
4 0.375 2

1
64

1
8

1
1024

 ≡
[

1 t∗

0 T

]
.

Then

T−∗t =


2
0

−192
0


and the upper triangular factor Rt of the Cholesky decomposition (3.4) is

Rt =


√

5 0 −384√
5

0
1 0 0√

36869
5 0

1

 .(3.10)

Because of

(RtT )−∗t =


√

4
5

0

−
√

1
5 − (0.0052)2

0


we can define Γ = diag(1, 1,−1,−1), see (3.5), giving the upper triangular matrix R with rounded
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entries

R = ΓRtT =


1.118 2.2361 5.143 4.6276

0.125 0.375 2
−1.3417 −5.3669

−1
1024

 .

The vector h in (3.6) and the corresponding GMRES convergence curve, see (1.2), are

h =



√
4
5

0√
1
5 − (0.0052)2

0
0.0052

 ,

f(0) = ‖r(0)‖ = 1, f(1) = ‖r(1)‖ =

√
1
5
, f(2) = ‖r(2)‖ =

√
1
5
,

f(3) = ‖r(3)‖ = 0.0052, f(4) = ‖r(4)‖ = 0.0052.

In this example we prescribed rapidly decreasing lower subdiagonal entries of the Hessenberg
matrix. As might be expected, this leaded to relatively fast GMRES convergence, in spite of
completely diverging Ritz values. Can we force any GMRES convergence speed with arbitrary
Ritz values ?

The previous example indicates there is a relation between zero Ritz values and stagnation
in GMRES. This is well-known: A singular Hessenberg matrix corresponds to an undefinable
iterate in the FOM method, which is equivalent to stagnation in the parallel GMRES process, see
e.g. [6, 15]. For completeness, we give another proof of this result, formulated with the notation
of Theorem 3.3.

Lemma 3.4. With the notation of Theorem 3.3 and for 1 ≤ k ≤ n−1, the k-tuple (ρ(k)
1 , . . . , ρ

(k)
k )

contains a zero Ritz value if and only if ηk = 0 in (3.6).
Proof. Denote by U(S) the Ritz value companion transform in (2.2) and let it be partitioned

according to (3.3) as

U(S) = ‖b‖Dσ

[
‖b‖ t∗

0 T

]−1

= ‖b‖Dσ

[
1
‖b‖

−t∗T−1

‖b‖
0 T−1

]
,

where Dσ = diag (1, σ1, σ1σ2, . . . ,Πn−1
j=1 σj). By definition of U(S), the k-tuple (ρ(k)

1 , . . . , ρ
(k)
k )

contains a zero Ritz value if and only if t∗T−1ek = 0. It can easily be checked that the upper
triangular factor Rt in the Cholesky decomposition

R∗
t Rt = In−1 + T−∗tt∗T−1

has its kth row and column zero, except for the diagonal entry, if and only if t∗T−1ek = 0. Then
the vector ĥ, being the solution of the upper triangular system

(ΓRt)∗ĥ = T−∗t

has kth entry zero if and only if t∗T−1ek = 0.
15



Thus GMRES residual norms cannot be fully independent of Ritz values. However, we will
show that the only restriction Ritz values put on GMRES residual norms is precisely that zero Ritz
values imply stagnation. Otherwise, any GMRES behavior is possible with arbitrary prescribed
Ritz values. Before proving this, we need the following auxiliary result.

Lemma 3.5. Consider n positive real numbers

f(0) ≥ f(1) ≥ · · · ≥ f(n− 1) > 0

and define

ηk = (f(k − 1)2 − f(k)2)1/2, k < n, ηn = f(n− 1), ĥ = [η1, . . . , ηn1 ]
T .

If we denote by Rh the upper triangular factor of the Cholesky decomposition

RT
h Rh = I − ĥĥT

f(0)2
,

then we have

eT
k R−T

h ĥ = 0 ⇔ f(k − 1) = f(k), k = 1, . . . , n.

Proof. The entries of RT
h are

(RT
h )i,k = − ηiηk√

η2
k+1 + · · ·+ η2

n

√
η2

k + · · ·+ η2
n

, (RT
h )k,k =

√
η2

k+1 + · · ·+ η2
n√

η2
k + · · ·+ η2

n

,(3.11)

see [13] on the Cholesky decomposition of a rank-one updated identity matrix, or also [24, Theorem
4.2]. Therefore, if ηk = 0 for some k ≤ n − 1, then the kth row and kth column of RT

h are zero
except for the main diagonal entry. It is easily seen from solving the lower triangular system
RT

h x = ĥ with forward substitution that x = R−T
h ĥ is zero only there where ĥ is zero.

Theorem 3.6. Consider a set of tuples of complex numbers

R = {ρ(1)
1 ,

(ρ(2)
1 , ρ

(2)
2 ) ,

...
(ρ(n−1)

1 , . . . , ρ
(n−1)
n−1 ) ,

(λ1 , . . . . . . . . . , λn)} ,

such that (λ1, . . . , λn) contains no zero number and n positive numbers

f(0) ≥ f(1) ≥ · · · ≥ f(n− 1) > 0,

such that f(k− 1) = f(k) if and only if the k-tuple (ρ(k)
1 , . . . , ρ

(k)
k ) contains a zero number. Let A

be a square matrix of size n and let b be a nonzero n-dimensional vector. The following assertions
are equivalent:
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1. The GMRES method applied to A and right-hand side b with zero initial guess yields
residuals r(k), k = 0, . . . , n− 1 such that

‖r(k)‖ = f(k), k = 0, . . . , n− 1,

A has eigenvalues λ1, . . . , λn, and ρ
(k)
1 , . . . , ρ

(k)
k are the eigenvalues of the kth leading

principal submatrix of the generated Hessenberg matrix for all k = 1, . . . , n− 1.
2. The matrix A is of the form

A = WY C(n)Y −1W ∗

and b = Wh, where W is any unitary matrix and C(n) is the companion matrix corre-
sponding to the polynomial with roots λ1, . . . , λn. Y is given by

Y =
[

h
R
0

]
,

h being the vector

h = [η1, . . . , ηn]T , ηk = (f(k − 1)2 − f(k)2)1/2, k < n, ηn = f(n− 1),

and R being the nonsingular upper triangular matrix of order n− 1

R ≡ R−1
h D−∗

c C−1,(3.12)

where C is the trailing principal submatrix in the partitioning

U(S) =
[

1 c∗

0 C

]
.(3.13)

of the Ritz value companion transform U(S) for R defined in (2.2). Rh is the upper
triangular factor of the Cholesky decomposition

RT
h Rh = I − ĥĥT

f(0)2
,

for ĥ = [η1, . . . , ηn−1]T and Dc is a nonsingular diagonal matrix such that

R−T
h ĥ = −f(0)2Dc c.(3.14)

Proof. Because of Theorem 1.1 it is clear that the parametrization given here generates the
prescribed GMRES residual norms and vice-versa. Hence it suffices to show the given parametriza-
tion generates the prescribed Ritz values and vice-versa. For this we will use the parametrization
of Theorem 3.3 and prove that the matrix R in (3.12) satisfies the same conditions as the upper
triangular R in (3.2) in Theorem 3.3.

First we show that the nonsingular diagonal matrix Dc used to define R in (3.12) exists. With
the assumed partitioning (3.13) of U(S) and by the definition of U(S), the entries of c are zero
precisely at positions corresponding to iterations with a zero Ritz value. By assumption, ĥ is
zero at exactly these positions and so is R−T

h ĥ with Lemma 3.5. Thus we can always define a
nonsingular diagonal matrix Dc such that

R−T
h ĥ = −f(0)2Dcc.
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Now with the definition (3.12) of R we have

R∗ĥ = −f(0)2C−∗c.

Next, in analogy with (3.3), consider the partitioning

diag(f(0), D−∗
c ) U(S)−1 =

[
f(0) t∗

0 T

]
,(3.15)

of a diagonal scaling of U(S)−1 =
[

1 −c∗C−1

0 C−1

]
. It follows that

t = −f(0)C−∗c =
R∗ĥ

f(0)

and

T = D−∗
c C−1.

To prove that the matrix R in (3.12) satisfies the same conditions as the upper triangular R in
(3.2) in Theorem 3.3, it remains to show that R−1

h = Rt, Γ = I, where Rt and Γ are the matrices
defined in the second assertion of Theorem 3.3. We have

I + T−∗tt∗T−1 = I + DcC
∗R∗ĥ

f(0)

(
DcC

∗R∗ĥ

f(0)

)∗

= I +
R−T

h ĥ

f(0)

(
R−T

h ĥ

f(0)

)∗
= R−T

h

(
RT

h Rh +
ĥĥ∗

f(0)2

)
R−1

h = R−T
h R−1

h

and with Γ = I

eT
k (R−1

h T )−∗t = eT
k RT

h

R−T
h ĥ

f(0)
=

ηk

f(0)
≥ 0, k = 1, . . . , n− 1.

Together with

ηn = f(n− 1) =
√

f(0)2 − (f(0)2 − f(1)2)− . . .− (f(n− 2)2 − f(n− 1)2) = f(0)

√
1− ‖ĥ‖2

f(0)2
,

we have that matrices of the form

W

[
h

R
0

]
C(R(n))

[
h

R
0

]−1

W ∗

and right-hand sides Wh generate the prescribed Ritz values and vice-versa, see Theorem 3.3.

The only freedom to prescribe both Ritz values and GMRES residual norms is in the unitary
matrix W and in those entries of the diagonal matrix Dc on positions corresponding to iterations
with a zero Ritz value or, equivalently, on positions corresponding to iterations where GMRES
stagnates. On these positions Dc may have arbitrary values. In this sense we have exhausted all
freedom; GMRES and Arnoldi are invariant under unitary transformation and more values than
Ritz values and residual norms cannot be prescribed for the same Arnoldi process.

18



Theorem 3.6 says that, in general, converging Ritz values need not imply accelerated con-
vergence speed in the GMRES method, as is the case for the CG method for hermitian positive
definite matrices [38]. The only restriction Ritz values put on GMRES is that a zero Ritz value
leads to stagnation in the corresponding iteration. A restricted role of Ritz values for GMRES
may be expected in view of the fact that the Ritz values are not the roots of the polynomials GM-
RES generates to compute its residuals. These roots are the harmonic Ritz values, see [30, 15].
Nevertheless, the extent to which Ritz values and residual norms are independent is astonishing.
Note, for example, that for matrices close to normal the bounds derived in [39] suggest that as
soon as eigenvalues of such matrices are sufficiently well approximated by Ritz values, GMRES
from then on converges at least as fast as for a related system in which these eigenvalues are
missing. This may be surprising but it is not contradictory.

Note that we could also have formulated the second assertion in the previous theorem analo-
gously to the second assertion in Theorem 3.3. Then the diagonal scaling matrix in (3.3) takes the
form of the diagonal matrix in (3.15); otherwise the assertion needs not be changed. Translated
in the notation of Corollary 2.3, this gives the following alternative parametrization.

Corollary 3.7. Assume we are given a set of tuples of complex numbers

R = {ρ(1)
1 ,

(ρ(2)
1 , ρ

(2)
2 ) ,

...
(ρ(n−1)

1 , . . . , ρ
(n−1)
n−1 ) ,

(λ1 , . . . . . . . . . , λn)} ,

such that (λ1, . . . , λn) contains no zero number and n positive real numbers

f(0) ≥ f(1) ≥ · · · ≥ f(n− 1) > 0,

such that f(k − 1) = f(k) if and only if the k-tuple (ρ(k)
1 , . . . , ρ

(k)
k ) contains a zero number. If

A is a matrix of order n and b a nonzero n-dimensional vector, then the following assertions are
equivalent:

1. The GMRES method applied to A and right-hand side b with zero initial guess yields
residuals r(k), k = 0, . . . , n− 1 such that

‖r(k)‖ = f(k), k = 0, . . . , n− 1,

A has eigenvalues λ1, . . . , λn, and ρ
(k)
1 , . . . , ρ

(k)
k are the eigenvalues of the kth leading

principal submatrix of the generated Hessenberg matrix for all k = 1, . . . , n− 1.
2. The matrix A is of the form

A = V diag(f(0), D−∗
c ) U(S)−1C(n)U(S) diag(f(0)−1, D∗

c )V ∗

and b = ‖b‖V e1, where V is a unitary matrix, U(S) is the Ritz value companion transform
for R defined in (2.2) and C(n) is the companion matrix of the polynomial with roots
λ1, . . . , λn. Dc is a nonsingular diagonal matrix such that

R−T
h ĥ = −f(0)2Dcc

with ĥ being the vector

ĥ = [η1, . . . , ηn−1]T , ηk = (f(k − 1)2 − f(k)2)1/2,
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Rh being the upper triangular factor of the Cholesky decomposition

RT
h Rh = I − ĥĥT

f(0)2
,

and c being the first row of U(S) without its diagonal entry.

This parametrization is based on unitary matrices V spanning Kn(A, b) instead of unitary
matrices W spanning AKn(A, b) and is therefore closer to the actual Arnoldi process which is
run in standard implementations of the GMRES and Arnoldi methods. On the other hand,
the parametrization in Theorem 3.6 reveals more clearly the relation with the prescribed residual
norms. Note that we can easily change Corollary 3.7 to yield a “V -based” analogue of Theorem 1.1;
it suffices to consider U(S) as a free parameter matrix. Corollary 3.7 also shows how to define the
subdiagonal entries hk+1,k of a Hessenberg matrix with prescribed Ritz values in order to obtain
prescribed GMRES residual norms: They follow from the equality

f(0) diag
(
1, h2,1, h2,1h3,2, . . . ,Πn−1

j=1 hj+1,j

)
= diag (f(0), D−∗

c ).

We conclude this section with an example where all generated Ritz values coincide with the
spectrum of the input matrix, but GMRES is nearly stagnating. Note that the previous example
demonstrated the opposite behavior: Ritz values where diverging, but GMRES converged rapidly.
We now prescribe the Ritz values

R = {1,

(1, 1) ,

(1, 1, 1) ,

(1, 1, 1, 1) ,

(1, 1, 1, 1, 1)}

and prescribe the nearly stagnating GMRES residual norms

‖r(0)‖ = 1, ‖r(1)‖ =
1
2
, ‖r(2)‖ =

1
3
, ‖r(3)‖ =

1
4
, ‖r(4)‖ =

1
5
, ‖r(5)‖ = 0.

The prescribed Ritz values give the Ritz value companion transform

U(S) =


1 −1 1 −1 1

1 −2 3 −4
1 −3 6

1 −4
1

 .

From the partitioning (3.13) we have

c =


−1

1
−1

1

 , C−1 =


1 2 3 4

1 3 6
1 4

1

 .
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The prescribed residual norms give h = [
√

3/2,
√

5/6,
√

7/12, 3/20, 1/5]T and the Cholesky factor
Rh of I − ĥĥT with ĥ = [

√
3/2,

√
5/6,

√
7/12, 3/20]T takes the form

Rh =


1
2 −

√
15
6 −

√
21

12 − 3
√

3
20

2
3 −

√
35

12 − 3
√

5
20

3
4 − 3

√
7

20
4
5

 ,

see the formulaes (3.11). Then

R−T
h ĥ =


√

3√
5√
7

3

 , i.e. Dc = diag(
√

3,−
√

5,
√

7,−3),

see (3.14). This gives in Theorem 3.6 the matrix R = R−1
h D−1

c C−1 with rounded entries

R =


1.1547 1.4434 1.7321 2.0207

−0.6708 −1.6398 −2.9069
0.504 1.7953

−0.4167


and the input matrix A is of the form

A = W


1.25 0.1076 0.0636 0.0433 0.0577

−0.5809 1.1944 0.115 0.0783 0.1043
−0.7512 1.1181 0.0803 0.1071

−0.8268 1.0775 0.1033
−0.48 0.36

W ∗

for an arbitrary unitary matrix W . The rounded entries in the previous parametrization of A are
of moderate size; the condition number of A is 4.34. However, the matrix of eigenvectors of A
has condition number around 1011. Note also that the Arnoldi process with this parametrization
yields the upper Hessenberg matrix with rounded entries

1 0 0 0 0
0.5774 1 0 0 0

0.7746 1 0 0
0.8452 1 0

0.8819 1

 .

All its leading principal submatrices Hk are defective with the sole eigenvector ek. Therefore, the
residual norms (2.5) for the corresponding Ritz value-vector pairs are, subsequently,

0.5774, 0.7746, 0.8452, 0.8819,

i.e. they grow with the iteration number whereas all Ritz values have converged since the very
start of the Arnoldi process (this need not be true for the Ritz vectors).
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4. Conclusion and future work. The Arnoldi orthogonalization process is a cornerstone
of several successful Krylov subspace methods for non-hermitian matrices. Nevertheless, two
of the most popular methods based on it, the GMRES and the Arnoldi methods, can exhibit
arbitrarily bad convergence behavior. For GMRES it is known for some time that any non-
increasing convergence curve can be generated with any spectrum [17]; the fact that all Ritz
values formed by the Arnoldi method can be prescribed appears not to have been noticed so far.
The present paper also shows that arbitrary convergence of GMRES is possible not only with any
spectrum, but even with any Ritz values for all iterations (provided we treat the stagnation case
correctly).

Seen the success of (modified versions of) the GMRES and Arnoldi methods, a question
which arises from the mentioned results is their importance for practice. First let us remark that
we assumed exact aritmetics throughout the paper; with large dimensions it might become very
difficult to generate prescribed convergence behavior in finite precision. Leaving aside the influence
of finite precision, for the GMRES method, it is more or less assumed that the pathological cases
arise in the highly non-normal case only. Here we have to distinguish two phenomena: The
ability to prescribe arbitrary residual norm curves and the independence of residual norms from
eigenvalues. Arbitrary GMRES convergence curves are possible for normal matrices, even for
unitary matrices [18, 17]. On the other hand, a sufficient condition for convergence to be dominated
by eigenvalues (and Ritz values), is normality of the system matrix. But this is not a necessary
condition. For a highly non-normal counterexample, consider GMRES applied to a Jordan block.
If the right-hand side is chosen appropriately, convergence is determined by the eigenvalue of the
block only. As a consequence of [17] and our results, any GMRES convergence analysis for a
significantly non-normal problem based on eigenvalues and Ritz values only, should be justified
by a detailed investigation of the involved data structure, in particular the interplay between
system matrix and right-hand side. Similarly, versions of restarted GMRES like deflation-based
techniques, based on modifying the spectrum of the system matrix or of generated Hessenberg
matrices, can be guaranteed to work only for particular classes of problems, for example with
normal matrices.

The influence of normal input matrices on the behavior of the Arnoldi method is more confus-
ing. It follows from the uniqueness of Hessenberg matrices with prescribed Ritz values and lower
subdiagonal, see Theorem 2.2, that not every set of Ritz values can lead to a normal Hessenberg
matrix. The characterization of the Ritz values that can be generated by a normal matrix, apart
from their location inside the convex hull of the eigenvalues, appears to the authors to be an open
problem. Although there are generalized interlacing properties for normal matrices, they cannot
be exploited because the leading principal submatrices of normal Hessenberg matrices need not
be normal. Thus cases of rather pathological Ritz value behavior with normal matrices might still
be possible. It seems that, even more than for the GMRES method, tools for convergence analysis
in the Arnoldi method must be developed individually for every (class of) problem(s).

The main issue following from our results is how to detect, a priori, whether a matrix with
initial vector will lead to diverging Ritz value behavior in Arnoldi or to stagnation in GMRES.
For GMRES, work on complete or partial stagnation was done for example in [41] or, recently,
in [24], where the results are linked with the parametrization in Theorem 1.1. More generally,
the question is whether our theory gives some insight on what is a good Arnoldi starting vector,
respectively, right-hand side b. Related questions are: Given a matrix A and a residual norm
convergence curve does there exist a right-hand side b for which GMRES gives the prescribed
norms? Or given A and b, what are the possible convergence curves? Particularly relevant for
practice are the questions whether our results are valid for popular restarted versions of Arnoldi
or GMRES and whether the case of early termination in the Arnoldi process can be incorporated
in the theory. The last two questions are the subject of a forthcoming paper.

22



Software. At the link http://www.cs.cas.cz/duintjertebbens/duintjertebbens soft.html the rea-
der can find MATLAB subroutines to create matrices and initial vectors with the parametrizations
in this paper.

Acknowledgements. The authors are indebted to Zdeněk Strakoš for initiating their work
on this topic.
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http://www.cs.chalmers.se/pub/num analysis/reports/, June 1990.

[12] K. Fan and G. Pall, Imbedding conditions for Hermitian and normal matrices, Canad. J. Math., 9 (1957),
pp. 298–304.

[13] P. E. Gill, G. H. Golub, W. Murray, and M. A. Saunders, Methods for modifying matrix factorizations,
Math. Comp., 28 (1974), pp. 505–535.

[14] S. Godet-Thobie, Eigenvalues of Large Highly Nonnormal Matrices, PhD thesis, University Paris IX,
Dauphine, Paris, France, 1993.

[15] S. Goossens and D. Roose, Ritz and harmonic Ritz values and the convergence of FOM and GMRES,
Numer. Linear Algebra Appl., 6 (1999), pp. 281–293.

[16] A. Greenbaum, Generalizations of the field of values useful in the study of polynomial functions of a matrix,
Linear Algebra Appl., 347 (2002), pp. 233–249.
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