
EPFL 1988

Iterative methods for multiprocessor vector computers

Gérard Meurant

C E A

Centre d’Etudes de Limeil-Valenton

Outline :

1) Problems to be solved

2) Issues for multiprocessor vector computers

3) Iterative methods

• linear splittings
• conjugate gradient

4) Preconditioners

• incomplete decompositions
• polynomials
• block preconditioners

5) Domain Decomposition

Problems to be solved

We are interested into solving linear systems arising
from the discretization of linear partial differential
equations with (possibly) strongly discontinuous coef-
ficients like,

− ∂

∂x
(a(x, y)

∂u

∂x
)− ∂

∂y
(b(x, y)

∂u

∂y
)

+2α(x, y)
∂u

∂x
+ 2β(x, y)

∂u

∂y
+ σu = f

in Ω ⊂ Rd, d = 2 or d = 3

u |∂Ω= 0 or
∂u

∂n
|∂Ω= 0

The problem can be either

• non symmetric

• symmetric (α = β = 0)

We can use different methods for discretizing

• finite differences (5 point, 9 point,. . .)
with various schemes (centered, upwind)

• finite elements (P1, Q1, P2,. . .)

These methods give (usually) large sparse (depending
on the scheme) systems of linear equations.

The structure of the matrix is different depending
on

• finite difference : strongly structured mesh,
matrix usually stored by diagonals −→ regu-
lar access patterns to data

• finite elements : unstructured mesh, matrix
stored with pointers −→ scattered acesses to
data (SCATTER-GATHER).

Other methods could be used like boundary integral
methods or spectral methods. These give rise to dense
linear systems.

All these issues have a strong influence on the perfor-
mance of the algorithm; as well as the characteristics
of the computer.

2) Issues for multiprocessor vector computers

• shared memory machines (ex : CRAY)
• local memory machines (ex : Hypercubes)
• a combination of both (ex : ETA)

multi mono

CRAY Y–MP (8) CRAY 1–S

CRAY X–MP (4) CYBER 205

CRAY 2 (4) FUJITSU VP

ETA 10 NEC SX

Minisupers HITACHI

...
...

An important issue for parallel computation is the
granularity of the computations, that is roughly the
number of operations that we are doing between 2 syn-
chronizations of the processors that usually require a
call to the operating system.

There should be a balance between the speed of the
processor and the time needed for synchronization.

For 2D problems the granularity of efficient iterative
methods is too small to get the best possible results
(all processor running all the time at full speed and
very few synchronizations).

They require very efficient hardware and software syn-
chronisation, especially when the processors are very
fast.

Another important issue is how to express the paral-
lelism in the code. No really satisfactory answer has
been given yet (multitasking, microtasking, ”super”
languages, Schedule,. . .).
There is also a problem of portability.

The main method to introduce parallelism in linear
algebra computations is to use special orderings of the
unknowns (or grid points) to ”decouple” some of the
equations.

Unfortunately introducing parallelism usually slows
down convergence. So the rule of the game is to find a
trading off between parallelism and the speed of con-
vergence.

Iterative methods

Many ”old” iterative methods are based on a splitting
of the matrix

A = M −N

with M non singular.
Then we construct a sequence xk starting from x0,

Mxk+1 = Nxk + b

This is equivalent to

xk+1 = M−1Nxk +M−1b.

If εk = xk − x, then

εk+1 = M−1Nεk = (M−1N)
k+1

ε0

It is well known that

Bk −→ 0 ⇐⇒ ρ(B) < 1

where ρ is the spectral radius = maxi |λi|.
So the linear method converges to the solution of Ax =
b if and only if ρ(M−1N) < 1.

If A = D+L+LT , the most well known methods are

• Jacobi, M = D

• Gauss–Seidel, M = D + L

• Relaxation (S.O.R.), M = D + ωL

Convergence conditions

Definitions and theorems

A strictly diagonally dominant

|ai,i| >
∑
j �=i

|ai,j |, ∀i

A generalized strictly diagonally dominant (GSDD)

|ai,i| di >
∑
j �=i

|ai,j | dj , ∀i, di > 0

A M–matrix ⇐⇒ A non singular,
ai,j ≤ 0, i
= j, A−1 ≥ 0.

A M–matrix ⇐⇒ A GSDD, ai,j ≤ 0, i
= j

M(A)i,i = |ai,i|, M(A)i,j = −|ai,j | i
= j

A H–matrix ⇐⇒ M(A) M–matrix

A H–matrix =⇒ Jacobi converges

A H–matrix =⇒ Gauss–Seidel converges

A H–matrix =⇒ SOR converges, ∀B ∈ Ω(A) = {B |
M(B) = M(A)} if

0 < ω <
2

1 + ρ(|J(B)|)

For SOR, M−1N is not symmetric

SSOR

1, 2, . . . , n

n, n− 1, . . . , 2, 1

(D + ωL)xk+1/2 = ωb+ (1− ω)Dxk − ωUxk

(D + ωU)xk+1 = ωb+ (1− ω)Dxk+1/2 − ωLxk+1/2

The iteration matrix is symmetric

Jacobi is parallel but inefficient, with Gauss–Seidel and
relaxation there is a recursion.

We can handle this problem by renumbering the un-
knowns.

example : Red–Black (or block Red–Black) ordering

Another solution for the 5 point scheme is to compute
by diagonals

More generally one can use Multicolor orderings.

Richardson

xk+1 = xk + α(b−Axk)

Richardson converges ⇐⇒ α < 2
λ1

αopt =
2

λ1 + λn

Generalized Richarson

Mxk+1 = Mxk + αk(b−Axk)

Acceleration of Richardson

xk+1 = ωk+1(αkz
k + xk − xk−1) + xk−1

Mzk = rk = b−Axk

Suppose A and M are symmetric positive definite

We choose αk and ωk such that

(zi,Mzj) = 0, i
= j

This gives rn = 0

We have to take

αk =
(zk,Mzk)
(zk, Azk)

ωk+1 =
1

1− αk(zk,Mzk)

ωkαk−1(zk−1,Mzk−1)

Between methods which can be written as

xk+1 = x0 +Qk(M−1A)z0

Qk polynomial of degree k, it minimizes E(xk)

E(xk) = (A(x− xk), x− xk)

Consequence

E(xk) ≤ 4
(√

κ− 1√
κ+ 1

)2k

E(x0)

where κ = λmax

λmin

We can use this method as an iterative algorithm

This the . . .

Conjugate Gradient method

r0 = b−Ax0,

for k = 0, 1, . . . until convergence,

Mzk = rk,

βk =
(rk, zk)

(rk−1, zk−1)
, β0 = 0,

pk = zk + βkp
k−1,

αk =
(rk, zk)
(Apk, pk)

,

xk+1 = xk + αkp
k,

rk+1 = rk − αkApk.

The problems come from

• the dot products for parallel computation (synchro-
nization)

• Ap if the data accesses are not regular

• Mz = r for both vector and parallel computation

There are (partial) solution to these problems.

Other possibilities are to use Tchebycheff, Richardson
or other polynomial methods but usually they require
estimations of the extreme eigenvalues.

Basic CG (M = I) is well suited for vector computa-
tion, as there exist fast implementations of the 3 first
operations on all today vector supercomputers. As an
example consider the asymptotic Mflops rates for these
operations on one processor of a CRAY X–MP/416
and of the ETA 10–E.

operation CRAY X–MP CRAY X–MP
dedicated loaded

saxpy 185 145
dot product 209 180

matrix vector 169 145

operation CRAY Y–MP ETA 10–E
dedicated dedicated

saxpy 236 378
dot product ? 187

matrix vector 250 187

For basic CG without preconditioning, the percentages
of time spent in the different parts of the computation
(not including the initialization phase) on the CRAY
X–MP are given for a system of order 36100 in the
following table

operation percentage

saxpy 32
dot product 19.9

matrix vector 47.9
stopping test 0.

From these figures, we can estimate the computational
speed we can achieve as we know the percentage of
time we are spending in each of the basic operations.

Let nop, top, flop, pop respectively the number of op-
erations, the time, the number of floating point op-
erations per second and the percentage of time for
one basic operation and ttot the total time; then, as
pop = top

ttot
, the number of flops for the whole algorithm

is
fl =

∑
op

nop

ttot
=

∑
op

flop pop

For basic CG on a loaded X–MP system, we can pre-
dict a speed of 151 Mflops; the measurements give 145
Mflops, which shows a good agreement. A dedicated
system would deliver 181 Mflops (recall that the max-
imum speed for one processor of the X–MP is 235
Mflops). For a 2500 system, the measured speed is
125 Mflops.

Some of the data dependancies in CG can be removed,
noticing that (in exact arithmetic) we have

(Mzi, zj) = 0, i
= j

Then, it follows

(rk+1, zk+1) = α2
k(M

−1Apk, Apk)− (rk, zk).

The modified algorithm is :

x0 given, r0 = b−Ax0,Mz0 = r0, p0 = z0.

For each k until convergence,

Mvk = Apk,

(vk, Apk), (pk, Apk), (rk, zk)

αk =
(rk, zk)
(pk, Apk)

sk+1 = α2
k(v

k, Apk)− (rk, zk)

βk+1 =
sk+1

(rk, zk)

xk+1 = xk + αkp
k

rk+1 = rk − αkApk

zk+1 = zk − αkv
k

pk+1 = (zk − αkv
k) + βk+1p

k

In this algorithm we use a predictor–corrector for the
dot product (rk+1, zk+1). First, we predict a value to
be able to compute βk+1; then, we correct the value
after having computed the new vectors, to improve the
stability of the algorithm.

Preconditioners

M symmetric positive definite

M sparse

M easy to construct

Mz = r easy to solve

”good’ distribution of the eigenvalues of M−1A

Simplest idea
M = diag(A)

SSOR or block SSOR

A = D + L+ LT

M =
1

ω(2− ω)
(D + ωL)D−1(D + ωLT)

Model problem

κ(A) = O(
1
h2

)

∃ ωopt st κ(M−1A) = O(
1
h
)

Pb : ω ?

Incomplete Cholesky decomposition

We have

If we do the Cholesky decomposition of A, we get fill–
in

To get an Incomplete Cholesky decomposition, at
each stage of the elimination we drop the fill–ins

This is particularly easy for a 5 diagonal matrix

M = L D−1 LT

with

If
A = (ci, bi, ai, bi+1, ci+m)

and

L = (c̄i, b̄i, di, 0, 0), D = (0, 0, di, 0, 0)

By inspection
c̄i = ci

b̄i = bi

di =
1

ai − b2i−1di−1 − c2i−mdi−m

This called IC(1,1)

For the model problem we have

κ(M−1A) = O(
1
h2

)

but a good distribution of the eigenvalues

We can also keep more terms in L

For any pattern, we can do IC for H–matrices

Solving Lw = c, we have recurrences, so IC is not
directly vectorizable

We have to modify it

The Van der Vorst method

Symmetrize M

(D−1/2LD−1/2)(D−1/2LTD−1/2)D1/2z = D−1/2r

D−1/2LD−1/2y = D−1/2r

D−1/2LD−1/2 =

E1

B2 E2

.
Bn En

E1y1 = D
−1/2
1 r1

Eiyi = −Biyi−1 +D
−1/2
i ri

Ei is lower bidiagonal

Ei = I + Fi

Fi =

0
x 0

x 0
x 0

x 0
x 0

We approximate E−1
i = (I + Fi)

−1 by a Neumann se-
ries

E−1
i ≈ I − Fi + F 2

i − F 3
i = (I − Fi)(I + F 2

i)

F 2
i is easily computed

F 2
i =

0
0 0
x 0 0

x 0 0
x 0 0

x 0 0

Bidiagonal solves are done via matrix products −→
vectorizable

Pb : number of iterations ?

We call this method ICVDV

Another way to vectorize or parallelize is to use
different orderings of the unknowns

Modified preconditioners

M = LD−1LT = A+R

Modify D such that rowsum(R) = 0 or ch2

For a 5 diagonal matrix :

1
di

= (1 + ch2)ai − bi−1(bi−1 + ci−1)di−1

−ci−m(ci−m + bi−m)di−m

More efficient for some problems

For the model problem

κ(M−1A) = O(
1
h
)

Same problems for vectorization

Block preconditioners

A =

D1 AT
2

A2 D2 AT
3

.
An−1 Dn−1 AT

n

An Dn

 .

Di is point tridiagonal strictly diagonally dominant,
Ai is diagonal.

L =

0
A2 0

.
An 0

The block Cholesky decomposition is

A = (Σ + L) Σ−1 (Σ + LT)

Σ =

Σ1

. . .
. . .

Σn

{
Σ1 = D1,

Σi = Di −Ai Σ−1
i−1 Ai

T .

Matrices Σi are dense, but . . .

The elements decay away from the diagonal

We approximate the dense matrices by tridiagonal ma-
trices

we approximate T−1 by trid(T−1), a tridiagonal ma-
trix whose elements are the same as the corresponding
ones of T−1

INV

A = (∆+ L) ∆−1 (∆ + LT)

∆ =

∆1

. . .
. . .

∆n

{
∆1 = D1,

∆i = Di −Ai trid(∆−1
i−1) Ai

T .

All the ∆i are tridiagonal matrices

INV can be done for H–matrices

INV gives better results then IC. Why ?

If
∆i = LiL

T
i

M = SST

with S

INV can also be modified −→ MINV

INV is not vectorizable, we have to solve tridiagonal
systems

∆iw = c

A way to vectorize is to replace ∆−1
i by a banded ap-

proximation

Taking 7 diagonals of the inverse is fine with most
problems

Then, everything is in vector mode −→ INVV

Polynomial preconditioners

M−1 = Pk(A) =
∑

αiA
i

Pk polynomial of degree k

The eigenvalues of M−1A are Pk(λi)λi

It is natural to ask for Pk(λ)λ close to 1 on [λmin, λmax]

Example: find s that minimizes

∫ λmax

λmin

(1− λs(λ))2w(λ) dλ

Common choice

w(λ) = (λmax − λ)α(λ− λmin)
β

α ≥ β ≥ −1/2 : Jacobi polynomials

Model problem, n = 50, ε = 10−6

k no. of it. */n

1 64 960
2 44 880
3 34 850
4 28 840
5 23 805
6 21 840
7 18 810
8 16 800
9 15 825
10 13 780

Model problem, n = 50, ε = 10−6, X–MP/4, x0 ran-
dom

precond no. of it. Mflops time

DIAG 110 127 0.041
IC 33 30 0.108

MIC 24 28 0.078
INV 15 19 0.067
MINV 12 19 0.053
INV2 11 19 0.067
MINV2 9 18 0.051
VDV 34 79 0.042
INVV 16 97 0.021

POLY(3) 35 122 0.041

op no precond IC INV INV2 VDV INVV

saxpy 32. 3.3 2.5 1.8 11.9 10.4
(.,.) 19.9 2.1 1.6 1.2 7.8 6.8
A p 47.9 4.9 3.7 2.8 18. 15.8
test 0. 0.9 0.7 0.5 3.2 3.1
prec 0. 88.6 91.4 93.5 58.6 63.8

