
Hamburg, Sept 2001

PARALLEL PRECONDITIONERS

Gérard MEURANT

CEA, DIF



Evolution of supercomputers

• Years 60–mid 70 : scalar computers

• mid 70–. . . 2000 vector computers

• 80–. . . 2000 ? multiprocessor vector computers with shared

memory

• mid 80–. . . 2000 distributed memory parallel computers

• end 90–?? SMP clusters (distributed clusters of nodes with

shared memory)

◦ PC clusters



Trends in computer architecture

• Tflops class computers need a “large” (1000) processors

• Use of “off the shelf” microprocessors

• Need for very efficient networking (latency, bandwith)

• Actual trend:

clusters of nodes with (4,. . . ) microprocessors, shared

memory within the node, distributed across nodes



Problems

•How to use efficiently these SMPs

• Programming is difficult: MPI, OpenMP, mixed model ?

•Lack of good development software (compilers, debuggers,

etc. . . )



Lack of parallelism is often linked with the mathematical prob-

lem, ex: elliptic problems

Leads to Ax = b with A sparse but A−1 is full! But there is

a decrease of the discrete Green function which can help intro-

ducing parallelism (points far away have not much influence)

0

5

10

15

0

5

10

15
0

0.1

0.2

0.3

0.4

0.5

0.6



Main problem

• Find scalable numerical methods

We want to solve with the same efficiency:

◦ “small” problems on a small number of processors (10),

◦ “large” problems on a very large number of processors

(1000)

Elapsed time must be constant when we rise proportionally the

problem size and the number of processors

This is a tough problem: most known algorithms are not scal-

able



Solving linear systems

If A is symmetric positive definite (SPD) we use the precondi-

tioned conjugate gradient (PCG)

x0 given, r0 = b−Ax0. For k = 0, 1, . . .

Mzk = rk,

βk =
(zk,Mzk)

(zk−1,Mzk−1)
, β0 = 0,

pk = zk + βkp
k−1,

γk =
(zk,Mzk)
(pk, Apk)

,

xk+1 = xk + γkp
k,

rk+1 = rk − γkApk.

M is the SPD preconditioner



◦ For PDEs the number of flops for one iteration is proportional

to n (depends on the sparsity structure of A and M)

◦ the number of iterations depends on the condition number

κ(M−1A)

◦ for PCG to be scalable we need κ = O(1)

◦ On parallel computers problem with the scalar products (n log n)

• This algorithm is well suited to vector computing but not to

parallel computing (many synchronization points)

• Same problems arise with Krylov methods for non symmetric

systems (BiCGstab, GMRES, etc. . . )



• Most known preconditioners give κ = O(nδ), δ > 1

• Many efficient preconditioners are not naturally parallel, ex:

incomplete Cholesky decomposition (recurrences)

To decrease the number of synchronization points, we may use

the other form of PCG

x0 given, for k = 0, 1, . . .

Mzk = rk(= b−Axk),

αk =
(zk,Mzk)
(zk, Azk)

,

ωk+1 =
1

1 − αk

ωkαk−1

(zk,Mzk)
(zk−1,Mzk−1)

, ω1 = 1,

xk+1 = xk−1 + ωk+1(αkz
k + xk − xk−1),

rk+1 = rk−1 − ωk+1(αkAzk − rk + rk−1).

However, the number of flops is larger (2 s.p., 1 matvec + 10n

vs 6n). Also less stable?



Preconditioners

Suppose A SPD large and sparse

◦ M SPD

◦ M sparse

◦ M easy and cheap to compute

◦ Mz = r easy to solve

◦ “good” eigenvalue distribution for M−1A

• Constructing good preconditioners is more art than science

◦ Computing M must be parallel

◦ Solving Mz = r must be parallel



Many well known preconditioners are based on direct or “clas-

sical” iterative methods:

- Diagonal, based on Jacobi iteration

M = D = diag(A)

- SSOR, based on successive over relaxation

A = D + L + LT

M =
1

ω(2 − ω)
(D + ωL)D−1(D + ωLT )

- Incomplete Cholesky, based on Gaussian elimination

If you do a Cholesky decomposition of A, A = L̃L̃T , you get

fill–in

To obtain an incomplete Cholesky decompositionM = LD−1LT ,

before computing a column of L, you throw away some fill-in

(based on position or value)

There are dependencies in the computation of L and in the

solves



PCG for Poisson problem m×m mesh

m IC(0) IC(ε = 0.005) IC(ε = 0.001)
10 16 9 7

op=66009 op=44173 op=42573

str=100 str=525 str=758

20 27 15 10

op=446957 op=296841 op=257393

str=400 str=2245 str=3488

30 38 21 13

op=1410785 op=934509 op=762053

str=900 str=5165 str=8218

40 49 26 16

op=3230793 op=2056749 op=1673553

str=1600 str=9285 str=14948

50 60 31 19

op=6176681 op=3829389 op=3108893

str=2500 str=14605 str=23678

60 71 38 22

op=10519049 op=6747485 op=5185073

str=3600 str=21125 str=34408



PCG for an anisotropic problem

m IC(0) IC(ε = 0.005) IC(ε = 0.001)
10 9 6 4

op=38373 op=28041 op=20253

str=100 str=434 str=461

20 14 7 6

op=236913 op=134025 op=119829

str=400 str=1864 str=1975

30 20 9 8

op=755081 op=384533 op=370325

str=900 str=4294 str=4995

40 26 10 8

op=1736529 op=758817 op=679245

str=1600 str=7724 str=9435

50 31 12 9

op=3227149 op=1411905 op=1204573

str=2500 str=12154 str=15275

60 37 14 10

op=5533017 op=2358353 op=1935861

str=3600 str=17584 str=22515



PCG for a discontinuous problem

m IC(0) IC(ε = 0.005) IC(ε = 0.001)
10 16 7 5

op=66009 op=41229 op=35013

str=100 str=716 str=898

20 29 10 7

op=478233 op=247713 op=228521

str=400 str=3268 str=4817

30 39 13 9

op=1447213 op=747101 op=710413

str=900 str=7951 str=20541

39 49 16 10

op=3070512 op=1565299 op=1382077

str=1521 str=13835 str=22361

50 61 19 12

op=6278389 op=3072973 op=2777061

str=2500 str=23229 str=38407

59 73 22 13

op=10453792 op=4962385 op=4244652

str=3481 str=32715 str=54841



• Are there any way to introduce more parallelism in IC?

- change of ordering

- modifications of algorithm



Change of ordering

Do an incomplete Cholesky decomposition of

AP = PAPT

Numerical experiments showed that the ordering has some im-

pact on the rate of convergence

• Lichnewsky 1984 (nested dissection)

• Simon 1985

• Duff–Meurant 1989 (many numerical experiments)

This effect has been rediscovered over and over by other people

since 1989

Theoretical explanation:

◦ V. Eijkhout 1990

◦ S. Doi 1990

M = LDLT = A + R



Examples of orderings

◦ ROW (row )

◦ CM (Cuthill–Mc Kee )

◦ MIND (Minimum degree )

◦ RB (Red–Black )

◦ ND (Nested dissection )

◦ VDV2 (Van der Vorst )

RB, ND and VDV2 have more parallelism



Poisson problem 30 × 30 mesh

ordering nit nb of fill nb R ‖R‖2
F

ROW 23 24389 841 142.5

CM 23 16675 841 142.5

MIND 39 7971 1582 467.3

RB 38 12853 1681 525.5

ND 25 15228 1012 157.1

VDV2 20 17413 841 140.7

nb of elements in L : 2639



Anisotropic problem a = 100, b = 1, 30 × 30 mesh

ordering nit nb of fill nb R ‖R‖2
F

ROW 9 24389 841 0.12 104

CM 9 16675 841 0.12 104

MIND 48 7971 1582 0.18 107

RB 47 12853 1681 0.21 107

ND 26 15228 1012 0.43 106

VDV2 9 17413 841 0.11 104

These results are explained by the Doi and Eijkhout theory



Results are different if we keep some fill

Exemple : Poisson with one level of fill

ordering nit nb of fill nb R nb L ‖R‖2
F

ROW 17 24389 1653 3481 24.7

CM 17 16675 1653 3481 24.7

MIND 23 7971 2467 4222 38.81

RB 16 12853 2016 4321 16.47

ND 19 15228 2187 3652 35.34

VDV2 17 17413 1651 3481 25.20



Anisotropic problem with one level of fill

ordering nit nb of fill nb R nb L ‖R‖2
F

ROW 8 24389 1653 3481 823

CM 8 16675 1653 3481 844

MIND 27 7971 2467 4222 0.22 106

RB 8 12853 2016 4321 806

ND 23 15228 2187 3652 0.18 106

VDV2 8 17413 1651 3481 795



Why are the results different (and better) with RB when we

keep some fill?

Let us look at the number and the absolute values of the fills

If

A = LDLT ,

‖A‖F =


∑

i,j

a2
i,j




1/2

.

‖A‖2
F = trace(ATA) = trace(AAT ).

Then

‖L
√
D‖2

F = trace(LDLT ) = trace(A)



If AP = PAPT and

AP = LPD
−1
P LT

P .

then

‖PAPT ‖F = ‖A‖F ,

and

‖LP

√
D−1

P ‖F = ‖L
√
D−1‖F =

√
trace(A), ∀P

If there are a few fills, they are large

With RB there are only a few fills, their absolute values are

larger than with ROW



Changes of algorithm

◦ Pothen and Hysom

◦ Magolu Monga Made and Van der Vorst

Pothen’s ILU(k) algorithm:

- partition the graph of A (subdomains) 1 subgraph=1 proces-

sor

- for each subgraph, order interior nodes first, then boundary

nodes

- form the subdomain graph, color the vertices

- factor the interior rows in parallel

- receive information from lower-numbered adjacent subdomains

- factor boundary rows enforcing the subdomain graph con-

straint

GS(L + U − I) = GS(A)

- send information to higher-numbered subdomains



We would like to directly compute M−1 and then

zk = M−1rk,

parallel matrix vector products

• Approximate inverses:

– Huckle et Grote (1994)

– Gould et Scott (1995)

– Chow et Saad (1994–1995)

– Benzi (1995–1996)



We want M−1A “to look like” I

We compute C = M−1 to minimize

‖AC − I‖ or ‖CA− I‖

Generally one takes the Frobenius norm:

‖AC − I‖2
F =

n∑
k=1

‖(AC − I)ek‖2,

ek k–th column of I, we minimize the l2 norms

‖Ack − ek‖, k = 1, . . . , n

n independent least squares problems (parallel)

Generally A−1 is dense, how to choose the sparsity structure of

ck?



Let ĉk be the vector of the non zero elements of ck

Let Âk be the matrix whose columns are those of A with indices

Gk = {j|(ck)j 
= 0} and whose rows i are such that ∃ai,j 
=
0, j ∈ Gk

min
ĉk

‖Âk ĉk − êk‖, k = 1, . . . , n

These small least squares problems are solved with QR

Structure of ck

Huckle & Grote start from G0
k (diagonal or same structure as

A)

One solves the problem and augment Gk iteratively

At iteration p, consider the residual r = Acpk − ek. We want to

decrease ‖r‖



Let L = {j|(r)j 
= 0} and ∀l ∈ L Nl = {j|al,j 
= 0, j 
∈ Gp
k}.

The candidates are chosen in

∪l∈LNl

For j in this set, solve

min
µj∈�

‖r + µjAej‖ =⇒ µj = − (r,Aej)
‖Aej‖2

The new residual is

‖r‖2 − (r,Aej)2

‖Aej‖2

One chooses indices that give the smallest residuals and iterate

the process

This method is denoted as SPAI. Parallel implementation was

considered by Deshpande, Grote, Messmer and Sawyer

Gould and Scott improved the choice of the new indices



Chow and Saad iteratively solve Acj = ej (which is as hard as

the original problem ) with a small number of iterations. They

can precondition with the already computed columns

For these methods, there are conditions for C being non singu-

lar; remark that C is not symmetric. We can keep symmetry by

computing only the lower triangular part, but this is not parallel.

Is C positive definite? One can look for C as KKT



Benzi, Meyer et Tuma approximate inverse

A SPD

If Z = [z1, z2, . . . , zn] is a set of conjugate directions for A,

ZTAZ = D

D diagonal and A−1 = ZD−1ZT

The direction are computed by Gram–Schmidt applied to

v1, v2, . . . , vn

If V = [v1, v2, . . . , vn] = I, Z is upper triangular

1) z
(0)
i = ei, i = 1, . . . , n

2) for i = 1, . . . , n d
(i−1)
j = (ai, z

(i−1)
j ), j = i, . . . , n where

ai is the ith column of A

if j 
= n, z
(i)
j = z

(i−1)
j −

(
d
(i−1)
j

d
(i−1)
i

)
z
(i−1)
i , j = i + 1, . . . , n

3) zi = z
(i−1)
i , di = d

(i−1)
i , i = 1, . . . , n



To preserve the sparsity structure, fills are thrown away based

on position or value (or both)

This method is known as AINV

Benzi, Meyer and Tuma shown that this method is feasible for

H–matrices

There exists a “robust” variant SAINV (Benzi, Cullum and

Tuma)

This is generalized to non symmetric matrices by considering

two sets Z = [z1, . . . , zn] and W = [w1, . . . , wn] such that

WTAZ = D



Pb : Poisson, L-shaped region, mixed b.c.

Comparison between IC and AINV (Benzi)

IC AINV

fill nb. iter time fill nb. iter time

675 87 0.33 743 76 0.32

897 53 0.18 780 74 0.32

912 51 0.18 1135 54 0.26

1204 38 0.14 1208 47 0.18

1439 32 0.14 1300 40 0.21

1565 24 0.10 3654 22 0.14



Comparison between SPAI and AINV (Benzi)

Matrix SPAI AINV

Its init t its Its init t its

3DCD 40 10.63 0.111 25 1.885 0.068

ALE3D 45 30.79 0.088 43 1.446 0.094

ORSREG1 40 3.309 0.033 33 0.550 0.031

SHERMAN1 62 0.878 0.029 43 0.201 0.021

PORES3 111 0.941 0.044 75 0.127 0.038

WATT2 377 2.590 0.384 111 0.505 0.116



0
5

10
15

20
25

0

5

10

15

20

25
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45



0
5

10
15

20
25

0

5

10

15

20

25
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018



0
5

10
15

20
25

0

5

10

15

20

25
0

0.005

0.01

0.015



Polynomial preconditioners

M−1 = Pk(A) =
k∑

i=0

αiA
i

Pk polynomial of degree k

Eigenvalues of M−1A are Pk(λi)λi

We ask for Pk(λ)λ being close to 1 on [λmin, λmax] ⊂ [a, b]



Neumann series

A = D − L− LT

A = D1/2(I −D−1/2(L + LT )D−1/2)D1/2

A−1 = D−1/2(I −D−1/2(L + LT )D−1/2)−1D−1/2

ρ(I −D−1A) = ρ(D−1(L + LT )) < 1

We take

M−1 = D−1/2[I + D−1/2(L + LT )D−1/2]D−1/2

= D−1 + D−1(L + LT )D−1

or more terms (odd nb to add to D−1)



MINMAX preconditioner

(Johnson, Michelli & Paul)

qk+1(λ) = pk(λ)λ

Qk = {polynomials of degree k, positive, being 0 in 0 }

Eigenvalues of A in [a, b], we want to minimize over Qk

cond(q) =
supλ∈[a,b]qk+1(λ)
infλ∈[a,b]qk+1(λ)

Solution:

qk+1(λ) = 1 − Tk+1(µ(λ))
Tk+1(µ(0))

where µ(λ) = 2λ−b−a
b−a and Tk Chebychev pol



Least squares

(Saad)

Find a polynomial s, to minimize

∫ b

a

(1 − λs(λ))2w(λ) dλ

w is a weight. Usual choice:

w(λ) = (b− λ)α(λ− a)β

α ≥ β ≥ −1/2: Jacobi polynomials

In practice α = β = −1
2 (Chebychev) or α = β = 0 (Legendre)



Drawbacks:

◦ we need to know a and b

◦ Evaluating polynomials of high degree (≥ 10 or 20) is numer-

ically difficult (32 bits) – instability of Horner’s scheme

• Solution: use 3 term recurrences (orthogonal polynomials)

Example for Minmax, polynomial pk is such that

pk(λ) =
4

a− b

ck
ck+1

+ 2µ(λ)
ck

ck+1
pk−1(λ) − ck−1

ck+1
pk−2(λ),

p0(λ) =
2

a + b
, p1(λ) =

8(a + b− λ)
a2 + b2 + 6ab

ck = Tk(µ(0))

Problem: the cost is higher

• Polynomial preconditioners are not very efficient on difficult

problems



1138-bus

x0 = 0, b random, ε = 10−10

prec nb it flops str

diag 1120 2.57 107 1138

ic 163 5.80 106 2596+

ssor 553 2.18 107 0

lev 1 163 5.80 106 2596+

lev 2 77 3.13 106 3877+

lev 3 54 2.45 106 5025+

lev 4 40 1.99 106 6168+

ch 0.1 98 3.57 106 2807+

ch 0.05 79 3.05 106 3347+

ch 0.01 43 1.96 106 5104+

ch 0.005 36 1.78 106 6085+

ai 0.1 111 5.09 106 5725+

ai 0.05 85 5.19 106 9525+

ai 0.01 46 6.92 106 31874+

pol ls 1 818 3.95 107 0

pol ls 2 580 4.27 107 0



Anisotropic problem, m = 40

x0 = 0, b random, ε = 10−10

prec nb it flops str

diag 288 1.05 107 1600

ic 26 1.52 106 4720+

ssor 97 6.15 106 0

lev 1 26 1.52 106 4720+

lev 2 10 0.65 106 6241+

lev 3 10 0.71 106 7723+

lev 4 10 0.74 106 8501+

ch 0.1 30 1.57 106 3160+

ch 0.05 30 1.57 106 3160+

ch 0.01 30 1.57 106 3160+

ch 0.005 10 0.64 106 6124+

ai 0.1 31 3.68 106 20520+

ai 0.05 30 4.05 106 24460+

ai 0.01 30 4.76 106 30560+

tw 161 8.15 106 7840+

pol ls 1 162 1.31 107 0

pol ls 2 113 1.41 107 0



Discontinuous problem, m = 40

x0 = 0, b random, ε = 10−10

prec nb it flops str

diag 168 6.13 106 1600

ic 54 3.16 106 4720+

ssor 62 3.93 106 0

lev 1 54 3.16 106 4720+

lev 2 33 2.13 106 6241+

lev 3 27 1.91 106 7723+

lev 4 29 2.14 106 8501+

ch 0.1 41 2.49 106 5227+

ch 0.05 31 2.00 106 6196+

ch 0.01 19 1.52 106 10097+

ch 0.005 16 1.46 106 12878+

ai 0.1 51 4.39 106 12430+

ai 0.05 36 5.21 106 27026+

ai 0.01 18 9.50 106 122907+

tw 90 4.55 106 7840+

pol ls 1 96 7.75 106 0

pol ls 2 67 8.37 106 0



Introduction to DD

• Domain decomposition is a “divide and conquer” technique

• Natural framework to introduce parallelism in the solution of

PDE’s

• General scheme:

◦ Decompose the problems into subproblems

◦ Solve the subproblems in parallel

◦ Glue the (sub)solutions together to get the global so-

lution

• The modern view on DD is to construct preconditioners for

Krylov iterative methods for solving linear systems



• There are hundreds of variants of DD preconditioners

• Two main classes

◦ methods with overlapping (Schwarz)

◦ methods without overlapping (interface problems)

• Methods differ also on other issues:

◦ exact or inexact solvers for subproblems

◦ solve a reduced system or the global system

◦ etc. . .

• Most DD methods for PDEs rely on mesh partitioning



The classical Schwarz alternating method

• Solve a 2nd order elliptic PDE in a bounded 2D domain Ω

• The domain Ω is split into two overlapping subdomains Ω1

and Ω2

• Γi, i = 1, 2, is the part of the boundary of Ωi enclosed in Ω

Ω

Ω

1

2

Γ

Γ1

2

◦ Guess a value for the unknowns on the inner boundary Γ1

◦ Solve the problem exactly in Ω1

◦ Use the computed values on the inner boundary Γ2 to solve

exactly in Ω2

◦ Repeat the process until convergence



Convergence was studied on the continuous pb by P.L. Lions

• Solve a 2nd order elliptic equation in a rectangle using a 5

point FD scheme with the natural (rowwise) ordering

A =




D1 −BT
2

−B2 D2 −BT
3

. . .
. . .

. . .

−Bm−1 Dm−1 −BT
m

−Bm Dm


 .

Suppose the mesh is partitioned as

Ω

Ω

1

2



• The matrix A(1) corresponding to Ω1 is

A(1) =




D1 −BT
2

−B2 D2 −BT
3

. . .
. . .

. . .

−Bp−2 Dp−2 −BT
p−1

−Bp−1 Dp−1


 ,

• The matrix A(2) corresponding to Ω2 is

A(2) =




Dl+1 −BT
l+2

−Bl+2 Dl+2 −BT
l+3

. . .
. . .

. . .

−Bm−1 Dm−1 −BT
m

−Bm Dm


 .

• Let us denote the matrix A in block form as

A =
(
A(1) A(1,2)

X X

)
and A =

(
Y Y

A(2,1) A(2)

)
,

and let b1 and b2 be the restrictions of the right hand side b to

Ω1 and Ω2

• Note that A(1,2) has only one non–zero block in the left lower

corner and A(2,1) is zero except for the upper right block



• We denote by x1 and x2 the unknowns in Ω1 and Ω2

• We extend the vectors x1 and x2 to Ω by completing with

the components of the previous iterate

• The Schwarz alternating method is

A(1)x2k
1 = b1+




0
...
0

BT
p (x2k−1

2 )p


 , A(2)x2k+1

2 = b2+




Bl+1(x2k
1 )l

0
...
0


 .

=⇒

x2k
1 = x2k−1

1 + (A(1))−1(b1 −A(1)x2k−1
1 −A(1,2)x2k−1

1,2 ),

x2k+1
2 = x2k

2 + (A(2))−1(b2 −A(2)x2k
2 −A(2,1)x2k

2,1).

x2k = x2k−1 +
(

(A(1))−1 0
0 0

)
(b−Ax2k−1),

x2k+1 = x2k +
(

0 0
0 (A(2))−1

)
(b−Ax2k).



By eliminating x2k we obtain

x2k+1 = x2k−1 + [
(

(A(1))−1 0
0 0

)
+
(

0 0
0 (A(2))−1

)

−
(

0 0
0 (A(2))−1

)
A

(
(A(1))−1 0

0 0

)
]r2k−1,

r2k−1 = b−Ax2k−1.

• The Schwarz alternating method is nothing else than a pre-

conditioned Richardson iteration

• This method can also be written with another notation

◦ We introduce restriction operators R1 and R2

xk1 = R1x
k, xk2 = R2x

k.

R1 is simply ( Ip−1 0 ) and R2 = ( 0 Im−l+1 )

A(1) = R1ART
1 , A(2) = R2ART

2 .



• The first step of the iteration is:

◦ restriction by R1

◦ apply the inverse of R1ART
1

◦ extension of the result by RT
1

x2k = x2k−1 + RT
1 (R1ART

1 )−1R1(b−Ax2k−1).

• The second step is

x2k+1 = x2k + RT
2 (R2ART

2 )−1R2(b−Ax2k).

Proposition

The matrix Pi = RT
i (RiART

i )−1RiA, i = 1, 2 is an orthogonal

projection in the scalar product defined by A

If εk is the error, we have

ε2k = (I − P1)ε2k−1, ε2k+1 = (I − P2)ε2k.



Other boundary conditions

• A way to reduce the overlap while maintaining a good con-

vergence rate is to use other inner boundary conditions than

Dirichlet for the subproblems (W.P. Tang)

• WPT proposed using inner mixed boundary conditions like

continuity of

ωu + (1 − ω)
∂u

∂n
.

• Numerical results show that this can substantially improve

the rate of convergence for small overlaps



Parallelizing Schwarz methods

• There is no parallelism in the Schwarz alternating method

• To get a parallel algorithm we use a coloring of the subdo-

mains such that a subdomain of one color is only connected to

subdomains of other colors

• For strips a red–black ordering is used, every other strip is

black, and red strips alternate with black strips



The additive Schwarz method

• The alternating Schwarz method can be considered as a kind

of Gauss-Seidel algorithm

• A way to get a parallel algorithm is to use instead a block

Jacobi–like method

This is known as the Additive Schwarz method, (Dryja and

Widlund)

M−1 =
∑
i

RT
i (RiART

i )−1Ri,

where the summation is over the number of overlapping sub-

domains

• More generally, one can replace the exact solves for each

subdomain by approximations and define

M−1 =
∑
i

RT
i M

−1
i Ri.



Adding a coarse mesh correction

• The rate of convergence of the multiplicative or additive

Schwarz methods depends on the number of subdomains

• To improve on this we add a coarse grid correction

• The coarse grid corresponds to the interfaces in the partition-

ing

M−1 =
∑
i

RT
i (RiART

i )−1Ri + RT
0 A

−1
C R0,

• The coarse grid operator may be chosen as a Galerkin ap-

proximation AC = R0ART
0

• If the extent of overlap is kept proportional to the “sizes” of

the subdomains the number of iterations is independent of n

and of the number of subdomains



Algebraic domain decomposition methods without overlapping

• We consider a square domain Ω decomposed into two subdo-

mains

• An elliptic second order PDE in a rectangle discretized by FD

• Let Ω1 and Ω2 be the two subdomains and Γ1,2 the interface

which is a mesh line

Ω

Ω

1

2

Γ1,2

• We denote by m1 (resp. m2) the number of mesh lines in

Ω1 (resp. Ω2), each mesh line having m mesh points (m =

m1 + m2 + 1)



• We renumber the unknowns in Ω

Let x1 (resp. x2) be the vector of unknowns in Ω1 (resp. in

Ω2) and x1,2 be the vector of the unknowns on the interface


 A1 0 E1

0 A2 E2

ET
1 ET

2 A12




 x1

x2

x1,2


 =


 b1

b2
b1,2


 .

E1 = (0 0 . . . 0 Em1
1 )T , E2 = (E1

2 0 . . . 0)T ,

where Em1
1 and E1

2 are diagonal matrices

• Most algebraic DD methods are based on block Gaussian

elimination (or approximate block Gaussian factorization) of

the matrix

• Basically, we have two possibilities depending on the fact

that we can or cannot (or do not want to) solve linear systems

corresponding to subproblems like

{
A1y1 = c1

A2y2 = c2

“exactly” with a direct method (or with a fast solver)



Exact solvers for the subdomains

• We eliminate the unknowns x1 and x2 in the subdomains

This gives a reduced system for the interface unknowns

Sx1,2 = b1,2,

with

b1,2 = b1,2 − ET
1 A−1

1 b1 − ET
2 A−1

2 b2

and

S = A12 − ET
1 A−1

1 E1 − ET
2 A−1

2 E2.

The matrix S is the Schur complement of A12 in A

• Constructing and factoring S is costly

• A more economical solution is to solve the reduced system

with matrix S on the interface with an iterative method



Theorem

For the Poisson model problem the condition number of the

Schur complement is

κ(S) = O(
1
h

).

• The product, Sp can be computed easily as

Sp = A1,2p− ET
1 A−1

1 E1p− ET
2 A−1

2 E2p,

p being a vector defined on the interface

E1p = (0 . . . 0 Em1
1 )T p = (0 . . . 0 Em1

1 p)T ,

E2p = (E1
2 0 . . . 0 )T p = (E1

2p 0 . . . 0)T .

Then w1 = A−1
1 E1p is computed by solving

A1w
1 = E1p,

This is solving a linear system corresponding to a problem in

Ω1



• Note that only the last block of the right hand side is different

from 0 and because we only need ET
1 w1, the last block w1

m1
of

the solution w1 is what we must compute

• Similarly, w2 = A−1
2 E2p is computed by solving

A2w
2 = E2p,

a problem in Ω2

Finally, we have

Sp = A1,2p− w1
m1

− w2
1.

• To improve the convergence rate of CG on the reduced system,

a preconditioner M is needed

• The main problem is:

Find an approximation of the Schur complement S



Approximate solvers for the subdomains

• Let us choose M in the form

M = L


M−1

1

M1
2

M−1
1,2


LT ,

where M1 (resp. M2) is of the same order as A1 (resp. A2) and

M1,2 is of the same order as A1,2. L is block lower triangular

L =


M1

0 M2

ET
1 ET

2 M1,2




• At each PCG iteration, we must solve a linear system like

Mz = M


 z1

z2

z1,2


 = r =


 r1

r2
r1,2


 .

• This is done by first solving Ly = r, where the first parallel

two steps are

M1y1 = r1, M2y2 = r2.



• Finally, we solve for the interface

M1,2y1,2 = r1,2 − ET
1 y1 − ET

2 y2.

• To obtain the solution, we have a backward solve step as


 I 0 M−1

1 E1

I M−1
2 E2

I




 z1

z2

z1,2


 =


 y1

y2

y1,2


 .

This implies that z1,2 = y1,2 and

M1w1 = E1z1,2, z1 = y1 − w1,

M2w2 = E2z1,2, z2 = y2 − w2.

• How to choose the approximations M1, M2 and M1,2?



M =


M1 0 E1

0 M2 E2

ET
1 ET

1 M∗
1,2


 ,

where

M∗
1,2 = M1,2 + ET

1 M−1
1 E1 + ET

2 M−1
2 E2.

• We would like M to be an approximation of A, it makes sense

to choose

M1 ≈ A1, M2 ≈ A2,

and

M∗
1,2 ≈ A1,2 =⇒ M1,2 ≈ A12 − ET

1 M−1
1 E1 − ET

2 M−1
2 E2.

• We are back to the same problem as before; that is to say,

M1,2 must be an approximation to the Schur complement S



A =




T −I
−I T −I

. . .
. . .

. . .

−I T −I
−I T


 ,

T = QΛQT ,

Q being such that QQT = I and Λ being a diagonal matrix

whose diagonal elements are the eigenvalues of T

In the simple square 2 subdomain case we can compute the

eigenvalues of S



Theorem

The spectral decomposition of the Schur complement is

S = QΘQT ,

where Θ is a diagonal matrix whose diagonal elements θl are

given by

θl = λl −
(rl)m1

+ − (rl)m1−
(rl)m1+1

+ − (rl)m1+1
−

− (rl)m2
+ − (rl)m2−

(rl)m2+1
+ − (rl)m2+1

−
,

where (rl)± =
λl±

√
λ2

l
−4

2

• We do not need to explicitly know the eigenvectors Q to

compute the eigenvalues

Proposition

Let λl = 2 + σl and γl =
(

1 + σl

2 −
√

σl + σ2
l

4

)2

, then

θl =

(
1 + γm1+1

l

1 − γm1+1
l

+
1 + γm2+1

l

1 − γm2+1
l

)√
σl +

σ2
l

4
, ∀l = 1, . . . ,m



• Let us now look at the eigenvalues of S when, for a fixed h,

the domains Ω1 and Ω2 extend to infinity

Theorem

If λl > 2,

θl → 2

√
σl +

σ2
l

4
when mi → ∞, i = 1, 2.

Dryja’s preconditioner

Let T2 be the matrix corresponding to finite difference dis-

cretization of the one–dimensional Laplacian

T2 = Q2Σ2Q
T
2 ,

where Σ2 is the diagonal matrix of the eigenvalues

σi = 2 − 2 cos(iπh), i = 1, . . . ,m



qi,j =

√
2

m + 1
sin(ijπh), i, j = 1, . . . ,m.

• We define the Dryja’s preconditioner MD as

MD = Q2

√
Σ2Q

T
2 .

• In a practical way, the action of M−1
D on a vector can be

implemented as two one dimensional FFTs and a division by the

eigenvalues



Golub and Mayers’ preconditioner

• The Golub and Mayers’ preconditioner is an improvement

upon Dryja’s preconditioner

MGM = Q2

√
Σ2 +

Σ2
2

4
QT

2 .

The Neumann–Dirichlet preconditioner

• This preconditioner was introduced by Bjørstad and Widlund


 A1 0 E1

0 A2 E2

ET
1 ET

2 A1,2




 x1

x2

x1,2


 =


 b1

b2
b1,2


 ,

• We can distinguish what in A1,2 comes from subdomain Ω1

and what comes from Ω2

A1,2 = A
(1)
1,2 + A

(2)
1,2.

Since we know that



S = A1,2 − ET
1 A−1

1 E1 − ET
2 A−1

2 E2,

we can define

S(1) = A
(1)
1,2 − ET

1 A−1
1 E1, S(2) = A

(2)
1,2 − ET

2 A−1
2 E2,

and S = S(1) + S(2)

• The Neumann–Dirichlet preconditioner is defined as

MND = S(1).

Note, that we could also have chosen S(2) instead of S(1)



The Neumann–Neumann preconditioner

• This preconditioner was introduced by Le Tallec

M−1
NN =

1
2

[
(S(1))−1 + (S(2))−1

]
Note that we directly define the inverse of the preconditioner as

an average of inverses of “local” (to each subdomain) inverses

of Schur complements.

All these preconditioners give κ(M−1S) = O(1) for the Poisson

problem with 2 subdomains



Inexact subdomain solvers

• If we cannot solve exactly for the subproblems, we are not

able to use an iterative method with S as we cannot compute

the matrix×vector product Sv

• We need a global parallel preconditioner

M = L




M−1
1

M−1
2

. . .

M−1
k

M−1
1,2

. . .

M−1
k−1,k




LT



L =




M1

M2

. . .
. . .

Mk

CT
1 ET

2 M1,2

CT
2 ET

3 H2 M2,3

. . .
. . .

. . .

CT
k−1 ET

k Hk−1 Mk−1,k




• The matrices Mi can be chosen as for the two subdomains

case

• For matrices Mi,i+1 and Hi, we have many possible choices



Domain decomposition with boxes

• A domain decomposition with strips can be done for more

general domains by finding pseudo–peripheral nodes and con-

structing the level structure corresponding to one of these nodes

• However, except for very large problems, when partitioning in

this way, we cannot use many subdomains. A way to partition

with many subdomains is to use so–called boxes

t



With exact solves for the subdomains, variants of the Bramble,

Pasciak and Schatz BPS preconditioner can be denoted as

M−1v =
∑
edges

RT
Ei

(αiMi)−1REiv + RT
HA−1

H RHv,

where REi denotes the restriction to the edge Ei and RH is

a weighted restriction onto the coarse mesh, Mi being one of

the preconditioners for two subdomain case: either Dryja or

Golub–Mayers



Vertex space preconditioners

• A way to improve on BPS is to allow for some coupling between

the vertices and the edge nodes

• Some points are considered around each vertex on each of

the edges

Let Vk be this set of points. Then the preconditioner is defined

as

M−1v =

RT
HA−1

H RHv+
∑
edges

RT
Ei

(MEi)
−1REiv+

∑
vertices

RT
Vk

(MVk
)−1RVk

v

This includes some coupling between neighboring edges

• The edge preconditioner can be chosen as a weighting of

Dryja’s or Golub–Mayers’ preconditioners



• L. Carvalho considered some preconditioners whose spirit is

quite close to the vertex space preconditioners

• Because they involve some kind of overlapping between the

edge and vertex parts, they are denoted as algebraic additive

Schwarz (AAS)

• He studied several local block preconditioners for the subdo-

mains and several coarse space preconditioners

• For one of the local preconditioners, the main difference with

the vertex space preconditioner is that the edge and the adja-

cent vertices are considered together

* *

* *



• Another proposal was to consider the complete boundary of

one subdomain, to be able to retrieve all the couplings between

the edge nodes and the vertices when the interior nodes are

eliminated

• It is necessary to add a coarse space component in the algo-

rithm

• A restriction operator R0 is defined (depending on the choice

of the coarse part of the preconditioner)

• The coarse component of the preconditioner is defined as

RT
0 A

−1
0 R0 where A0 is the Galerkin coarse space operator A0 =

R0SR
T
0



• Several possibilities were considered:

◦ i) a subdomain–based coarse space where all the boundary

points of a subdomain are considered. The coarse space is

spanned by vectors which have non–zero components for the

points around a subdomain, for all subdomains.

◦ ii) a vertex–based coarse space where the vertices and some

few adjacent edge points are considered.

◦ iii) an edge–based coarse space where the points of an edge

and the adjacent vertices are considered.

• When combining these coarse space preconditioners with the

local parts, a preconditioner for which the condition number is

insensitive to the mesh size or the number of subdomains is

obtained except for very highly anisotropic problems



Numerical experiments

• 16 × 16 mesh for each subdomain

• Pb 1: Poisson equation

nb of subd 4 × 4 8 × 8 16 × 16

ME 13 28 51

MV E 12 22 40

MS 11 19 32

MC−E 9 11 11

MC−V E 10 12 12

MC−S 10 10 11



• Pb 2: Isotropic discontinuous pb on the Scottish flag, coeffi-

cients 1, 103, 10−3

nb of subd 4 × 4 8 × 8 16 × 16

MC−E 11 11 15

MC−V E 12 12 16

MC−S 10 11 14

• Pb 3: Anisotropic and discontinuous pb on the Scottish flag,

coefficient 1 in x, same as before in y

nb of subd 4 × 4 8 × 8 16 × 16

MC−E 25 65 103

MC−V E 23 80 141

MC−S 20 43 79



Multilevel preconditioners

• We have seen that it is useful to add a coarse space compo-

nent to the additive Schwarz preconditioners

• It is relatively easy to generalize these two level methods to

a multilevel algorithm

• This is very close to multigrid algorithms, specially to the

algebraic multigrid methods

• We consider additive multilevel Schwarz preconditioners

◦ Suppose we have L different levels, each level being decom-

posed into N (l) subdomains denoted as Ωl
i

Then, the fully additive Schwarz preconditioner is defined as

M−1 =
L∑
l=0

N(l)∑
i=1

(Rl
i)
T (Al

i)
−1Rl

i.

The index l = 0 corresponds to the coarsest grid (eventually

one node)

Note that the subdomains Ωl
i overlap each other as in the one

level case



• A particularly simple case is the multilevel diagonal scaling

preconditioner

Then, if the coarsest grid has only a single subdomain

M−1 = (R0)T (A0)−1R0 +
L−1∑
l=1

(Rl)T (Dl)−1Rl + (DL)−1,

where Dl is the diagonal of Al

• A closely related preconditioner was developed by Bramble,

Pasciak and Xu (BPX)

◦ In finite element methods with linear approximations, the

diagonal elements of the matrix at level l must be of order

(hl)d−2 where h is the mesh size and d is the dimension (1, 2

or 3)

The BPX preconditioner is defined as

M−1 = (R0)T (A0)−1R0 +
L−1∑
l=1

(hl)2−d(Rl)TRl + (hL)2−dI

• It has been proved that the BPX is theoretically optimal, the

condition number being O(1).



• These additive Schwarz methods can be mixed with multi-

plicative methods in different ways

• One can define as before fully additive methods which are

additive among subdomains and between levels

• Another possibility is to be multiplicative between subdomains

on one level and additive between levels

• A third kind of algorithm is being multiplicative between both

subdomains and levels

• This is very close to a V–cycle multigrid (without smoothing)


